Publications(2024)
[1] Du L, Long X, Yuan C, et al. Tracing the subduction and accretion history of the trench-arc-basin system in the Chinese Eastern Tianshan: Insights from Paleozoic magmatic and crustal evolution[J]. Earth-Science Reviews,2024,252.
[2] Huang, H., Wang, T., Guo, L., Tong, Y., He, Z.-Y., Yin, J., Wu, H.-H., 2024. Crustal modification influenced by multiple convergent systems: Insights from Mesozoic magmatism in northeastern China. Earth-Science Reviews 252, 104737.
[3] Li X, Zheng Y, Shen Y, et al. Comparison of Sn-related granitoids in subduction and collision settings by accessory mineral geochemistry: A case study in the Tengchong-Lianghe tin belt, SW China[J]. Ore Geology Reviews,2024,16
[4] Tao, Z., Yin, J., Fowler, M., Xiao, W., Yang, Z., Sun, M., ... & Yang, F. (2024). Geodynamic Evolution of the Proto-Tethys Ocean in the West Kunlun Orogenic Belt, NW Tibet: Implications from the Sub-Arc Crust and Lithospheric Mantle Modification. Journal of Petrology, egae097.
[5] Tao, Z., Yin, J., Spencer, C. J., Sun, M., Xiao, W., Kerr, A. C., ... & Chen, W. (2024). Subduction polarity reversal facilitated by plate coupling during arc-continent collision: Evidence from the Western Kunlun orogenic belt, northwest Tibetan Plateau. Geology, 52(4), 308-313.
[6] Wang C, Wang T, van Staal C R, et al. Evolution of Silurian to Devonian magmatism associated with the Acadian orogenic cycle in eastern and southern Newfoundland Appalachians: Evidence for a three-stage evolution characterized by episodic hinterland-and foreland-directed migration of granitoid magmatism[J]. Geological Society of America Bulletin, 2024.
[7] Xiahui Z, Yuping S, Jianping Z, et al. Considerable heating during clockwise decompression of a long-lived Paleoproterozoic hot orogen: Evidence from the Xuanhua Complex, North China Craton[J]. Precambrian Research,2024,400.
[8] Yang, F., Yin, J., Xiao, W., Fowler, M., Kerr, A. C., Tao, Z., ... & Chen, Y. (2024). Early Cretaceous continental arc magmatism in the Wakhan Corridor, South Pamir: Mantle evolution and geodynamic processes during flat subduction of the Neo-Tethyan oceanic slab. Geological Society of America Bulletin.
[9] Yin, J., Xiao, W., Wang, T., Fowler, M., Kerr, A. C., Sun, M., ... & Tao, Z. (2024). Maturation from oceanic arcs to continental crust: Insights from Paleozoic magmatism in West Junggar, NW China. Earth-Science Reviews, 253, 104795.
[10] 王涛,童英,丁毅,郭磊,黄河,范润龙,王朝阳,张颖慧,曹光跃,张建军,2024. DDE-岩浆岩数据库初步构建与应用. 40(3): 873-888.
Publications(2023)
[1]Aibai, A., Chen, X., Wu, Y., Deng, X., Hao, F., Li, N., Xiao, W., Chen, Y., 2023. Nature, origin, and evolution of carbon-rich fluids in orogenic gold deposits: Insights from fluid inclusion and C-H-O isotope studies of the Tokuzbay gold deposit, Chinese Altai. Ore Geology Reviews 163.
[2] An, S., Wang, J., Xiao, W., Yao, C., Zhou, K., Yang, H., Jia, X., Zhang, Z., 2023. Crustal structure of the Tian Shan Orogen and its adjacent areas inferred from EIGEN-6C4 gravity field data. Tectonophysics 869.
[3] Bin W, Xiaoping L, Shitao Z, et al. Carboniferous variation of crustal thickness and subduction angles in Eastern Tianshan, NW China: evidence from the petrogenesis of the magmatic rocks in the Aqishan–Yamansu Belt[J]. International Geology Review,2023,65(5).
[4] Du L, Long X, Yuan C, et al.Identification of the Late Devonian back-arc magmatism in the Chinese Eastern Tianshan[J].Lithos, 2023.DOI:10.1016/j.lithos.2023.107283.
[5] Gabriel S. Santos, Tong Hong, Cees R. van Staal, Jean Bedard, Shoufa Lin, Kai Wang, Permian back‐arc basin formation and arc migration in the southern Central Asian Orogenic Belt, Northwest China , Geological Journal, 10.1002/gj.4609, 58, 2, (523-533), (2022).
[6] Gan, J., Xiao, W., Mao, Q., Wang, H., Yang, H., Sang, M., Jia, X., Liu, Y., Zhang, Z., Tan, Z., Li, R., 2023. A newly defined latest Carboniferous-Permian ridge subduction in the southern Altaids: Insights from adakitic, S-type, and I-type granitoids in the northern East Junggar (NW China). International Geology Review, 1-29.
[7] Gao, X., Dilek, Y., 2023. Albian–Cenomanian granitoid magmatism in Eastern and Central Tibet as a result of diachronous, continental collision induced slab tear propagation. Geological Society of America Bulletin, 135(3-4), 799-818, https://377.cglhub.com/10.1130/B36452.1.
[8] Hong, T., Santos, G.S., van Staal, C.R., Ji, W.H., Lin, S., 2023, Mapping uncovered a multi-phase arc--ack-arc system in the southern Beishan in the Permian. National Science Review, https://doi.org/10.1093/nsr/nwac204
[9] Hong, T., van Staal, C., Lin, S., Santos, G.S. and Wang, K. 2023. Evolving Permian magmatism associated with arc migration in the southern Beishan Orogenic Collage, Central Asian orogenic belt, NW China. In: Nance, R.D., Strachan, R.A., Quesada, C. and Lin, S. (eds) Supercontinents, Supercontinents, Orogenesis and Magmatism: A Tribute to the Career of J. Brendan Murphy. Geological Society, London, Special Publications 542, https://doi.org/10.1144/SP542-2022-346
[10] Hou Zeng-Qian, Wang Qing-Fei, Zhang Hai-Jiang, Xu Bo, Yu Nian, Wang Rui, David I. Groves, Zheng Yuan-Chuan, Han Shou-Cheng, Gao Lei, Yang Lin, 2023. Lithosphere architecture characterized by crust–mantle decoupling controls the formation of orogenic gold deposits. National Science Review, 10, nwac257.
[11] Hou Zeng-Qian, Xu Bo, Zhang Hai-Jiang, Zheng Yuan-Chuan, Wang Rui, Liu Yan, Miao Zhuang, Guo Lei, Zhao Zhidan, William L. Griffin, Suzanne Y. O’Reilly, 2023. Refertilized continental root controls the formation of the Mianning–Dechang carbonatite-associated rare-earth-element ore system. Communications Earth & Environment, 4, 293.
[12] Hou, Z.Q., Wang, R., Zhang, H.J., Zheng, Y.C., Jin, S., Thybo, H., Weinberg, R.F., Xu, B., Yang, Z.M., Hao, A.W., Gao, L., Zhang, L.T., 2023. Formation of giant copper deposits in Tibet driven by tearing of the subducted Indian plate. Earth-Science Reviews 243, 104482. https://doi.org/10.1016/j.earscirev.2023.104482.
[13] Jia, X., Xiao, W., Sang, M., Zhai, M., Li, L., Huang, P., An, S., Mao, Q., Tan, Z., Wang, H., 2023. Early Ordovician to early Silurian forearc accretionary processes in front of the Selety–Stepnyak arc in the Kokchetav area, northern Kazakhstan: implications for continental growth in the northwestern Altaids. International Journal of Earth Sciences 112, 2161-2180.
[14] Li, L., Xiao, W., Windley, B.F., Zhao, G., Yang, H., Sang, M., Jia, X., 2023. An early Paleozoic accumulation-foundering cycle of ultramafic cumulates in the Harlik arc and its implications for continental crustal growth in the Altaids. Lithos 462-463.
[15] Li, L., Xiao, W., Zhao, G., Yang, H., Han, Y., Wang, K., Gan, J., 2023. Tearing on the southward subducting Kelameili oceanic lithosphere in the early Devonian: Evidence from the magmatism in the Harlik arc, southern Altaids. Lithos 454-455.
[16] Li, N., Zhang, B., Danišík, M., Chen, Y.-J., Selby, D., Xiao, W., 2023. Formation–exhumation history of the Carboniferous Axi epithermal gold deposit in the Chinese Western Tianshan based on zircon U–Pb and pyrite Re–Os geochronology and (U–Th)/He zircon–apatite thermochronometry. Journal of the Geological Society 180.
[17] Li, P., Song, D., Zeng, H., 2023. Late Carboniferous arc-continent collision and subduction polarity reversal in southeast Altaids: New insights from provenance analysis of late Paleozoic sedimentary records. Journal of Asian Earth Sciences 248.
[18] Li, R., Xiao, W., Mao, Q., Wang, H., Sang, M., Tan, Z., Ao, S., Song, D., 2024. The Sailajiazitage volcanic and related rocks in the Tiekelik belt imply a Neoproterozoic seamount accreted to the southern Tarim Craton. Lithos 464-465.
[19] Li, R., Xiao, W., Mao, Q., Zhang, J.e., Ao, S., Song, D., Tan, Z., Wang, H., Bhandari, S., 2023. High magnesian schist, granitic gneiss, amphibolite and monzogneiss in the eastern Ama Drime Massif in South Tibet (China): A rifted Paleoproterozoic arc fringed the western Columbia supercontinent? Precambrian Research 388.
[20] Lin, S., Wang, L.J., Xiao, W.J., Xing, G.F., Niu, Z.J., Zhao, X.L., Yin, C.Q., Zhang, S., Liu, H., 2023, The early Paleozoic Wuyi-Yunkai orogeny in South China: A collisional orogeny with a major lag in time between onset of collision and peak metamorphism in subducted continental crust. Geological Society, London, Special Publications, v. 542, https://doi.org/10.1144/SP542-2023-6
[21] Liu, P., Liu, X., Xiao, W., Zhang, Z., Xiao, Y., Song, Y., Wu, H., 2023. Multiple ridge subduction processes in the southern Altaids: Implications from clinopyroxene chemistry and Sr–Nd–Hf isotopes of late carboniferous Nb-enriched, magnesian diorite-andesites in West Junggar, NW China. Chemical Geology 635.
[22] Liu, Y., Song, Y., Fard, M., Hou, Z., Ma, W., and Yue, L., 2023, The Characteristics and Origin of Barite in the Giant Mehdiabad Zn-Pb-Ba Deposit, Iran: Economic Geology, v. 118, p. 1495-1519.
[23] Liu, Y., Xiao, W., Ma, Y., Li, S., Peskov, A.Y., Chen, Z., Zhou, T., Guan, Q., 2023. Oroclines in the Central Asian Orogenic Belt. Natl Sci Rev 10, nwac243.
[24] Mao, Q., Xiao, W., Ao, S., Song, D., Sang, M., Tan, Z., Wang, H., Li, R., Wang, M., Zhang, C.-L., 2023. Final Amalgamation Processes of the Southern Altaids: Insights from the Triassic Houhongquan Ophiolitic Mélange in the Beishan Orogen (NW China). Lithosphere 2023.
[25] Mao, Q., Xiao, W., Ao, S., Windley, B.F., Song, D., Sang, M., Tan, Z., Wang, H., Li, R., 2023. Ordovician to Triassic episodic growth of the Dananhu arc, Eastern Tianshan (NW China). International Geology Review 65, 2798-2819.
[26] Mao, Q., Xiao, W., Ao, S., Yang, H., Song, D., Zhang, Z., Sang, M., Wang, H., Tan, Z., Li, R., 2023. Subduction Initiation of the Southern Branch of the Paleo‐Asian Ocean in the Middle Ordovician in the Southern Beishan Orogen. Earth and Space Science 10.
[27] Mao, Q., Xiao, W., Sang, M., Ao, S., Song, D., Tan, Z., Wang, H., Li, R., 2023. Two different types of provenances and the amalgamation of subduction complexes in the Eastern Tianshan of the Southern Altaids. Frontiers in Earth Science 10.
[28] Muhtar, M.N., Xiao, W., Brzozowski, M.J., Chen, S., Aibai, A., Wang, M., Wu, C., 2023. Genetic link between orogenic Au and porphyry Cu ( Au) mineralization in the Dananhu Arc, NW China: Evidence from geochronology, geochemistry, and Sr–Nd–Hf isotopes of the Tudunbei Au deposit. Journal of Geochemical Exploration 253.
[29] Qiao, Q., Xiao, W., Huang, B., Piper, J.D.A., Sun, J., Nie, J., Wang, D., Liu, C., 2023. Paleomagnetic constraints on neotectonic deformation within the Southern Tian Shan piedmont and implications for the latest Miocene enhanced aridification in the Tarim Basin. Global and Planetary Change 227.
[30] Qiu, K.F., Deng, J.*, He, D.Y., Rosenbaum, G., Zheng, X., Williams‐Jones, A.E., Yu, H.C., Balen, D., 2023. Evidence of vertical slab tearing in the Late Triassic Qinling Orogen (central China) from multiproxy geochemical and isotopic imaging. Journal of Geophysical Research: Solid Earth, 128(4), e2022JB025514, https://doi.org/10.1029/2022JB025514
[31] Safonova I., Perfilova A. (2023) Survived and disappeared intra-oceanic arcs of the Paleo-Asian Ocean: evidence from Kazakhstan. National Science Review (Reviews in Earth Sciences). https://doi.org/10.1093/nsr/nwac215
[32] Sang, M., Tan, Z., Xiao, W., Mao, Q., Wang, H., Li, R., Qiao, Q., 2023. Formation of the eclogites of the Atbashi complex, Kyrgyzstan, in a subduction zone mélange diapir. Communications Earth & Environment 4.
[33] Sarjoughian, F., Pourkarim, S., Esmaeili, R., Ao, S., Xiao, W., Lentz, D.R., 2023. Bulk chemistry and Hf isotope ratios of the Almogholagh Intrusive Complex, western Iran: a consequence of an extensional tectonic regime in the Late Jurassic. International Geology Review 65, 1878-1899.
[34] Schulmann, K., Edel, J.B., Lexa, O., Xiao, W., Trebinova, D., Spikings, R., Schaltegger, U., Derkowski, A., Szczerba, M., 2023. Paleomagnetic, tectonic and geochronological constraints for Permian-Triassic oroclinal bending of the Mongolian collage. Natl Sci Rev 10, nwac184.
[35] Song, D., Mitchell, R.N., Xiao, W., Mao, Q., Wan, B., Ao, S., 2023. Andean-type orogenic plateau as a trigger for aridification in the arcs of northeast Pangaea. Communications Earth & Environment 4.
[36] Song, Y., Liu, X., Xiao, W., Gong, X.-H., Liu, X., Xiao, Y., Zhang, Z., Liu, P., 2023. Tectonic evolution of circum-Rodinia subduction: Evidence from Neoproterozoic A-type granitic magmatism in the Central Tianshan Block, northwest China. Precambrian Research 387.
[37] Tao, Z.L., Yin, J.Y*., Chen, W., Chen, Y.L., Sun, J.B., Xu, Z.H., 2022. Zircon U-Pb ages and tectonic implications of Late Paleozoic volcanic rocks in the western Tianshan, North Xinjiang, China. Journal of Earth Science, 33(3): 736-752.
[38] Tao, Z.L., Yin, J.Y*., Sun, M., Wang, T., Yuan, C., Chen, W., Huang, H., Seltmann, R., Thomson, S.N., Chen, Y.L., 2022. Spatial and temporal variations of geochemical and isotopic compositions of Paleozoic magmatic rocks in the Western Tianshan, NW China: a magmatic response of the Advancing and Retreating Subduction. Journal of Asian Earth Sciences, 232(1): 105112.
[39] Tao, Z.L., Yin, J.Y*., Xiao, W.J., Seltmann, R., Chen, W., Sun, M., Wang, T., Yuan, C., Thomson, S.N., Chen, Y.L., Xia, X.P., 2022. Contrasting styles of peraluminous S-type and I-type granitoids in the Chinese south Tianshan (NW China): Petrogenesis and tectonic implications. American Journal of Science, 322, 279-312
[40] Wang T., Huang H., Zhang J.J., Wang C.Y., Cao G.Y., Xiao W.J., Yang Q.D., Bao X.W., 2023. Voluminous continental growth of the Altaids and its control on metallogeny. National Science Review, 10(2): nwac283. https://doi.org/10.1093/nsr/nwac283. See data at https://doi.org/10.1093/nsr/nwac283.
[41] Wang T., Tong Y., Huang H., Zhang H.R., Guo L., Li Z.X., Wang X.X., Bruce E., Li S., Zhang J.J., Donskaya T.V., Oleg P., Zhang L., Song P., Zhang X.W., Wang C.Y. Granitic record of the assembly of the Asian continent. Earth-Science Reviews, 2023, 237:104298.
[42] Wang T., Tong Y., Huang H., Zhang H.R., Guo L., Li Z.X., Wang X.X., Bruce E., Li S., Zhang J.J., Donskaya T.V., Oleg P., Zhang L., Song P., Zhang X.W., Wang C.Y., 2023. Granitic record of the assembly of the Asian continent. Earth-Science Reviews, 237: 104298. https://doi.org/10.1016/j.earscirev.2022.104298. For ESR special issue (BigData): “Toward a big data approach for reconstructing regional to global paleogeography and tectonic histories (Guest Editors: Z-X. Li, B. Eglington, and T. Wang)”. See data at https://doi.org/10.1016/j.earscirev.2022.104298.
[43] Wang T., Tong Y., Xiao W.J., Guo L., Windley B.F., Donskaya T., Li S., Narantsetseg T., Zhang J.J., 2022. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age data. National Science Review, 9(5): nwab210. https://doi.org/10.1093/nsr/nwab210. See data at https://doi.org/10.1093/nsr/nwab210.
[44] Wang T., Xiao W.J., William J.C., Tong Y., Hou Z.Q., Huang H., Wang X.X., Lin S.F., Reimar S., Wang C.Y., Han B.F., 2023. Quantitative characterization of orogens through isotopic mapping. Communications Earth & Environment, 4, 110. https://doi.org/10.1038/s43247-023-00779-5. See data at https://doi.org/10.6084/m9.figshare.22345072.v1.
[45] Wang T., Xiao W.J., William J.C., Tong Y., Hou Z.Q., Huang H., Wang X.X., Lin S.F., Reimar S., Wang C.Y., Han B.F., 2023. Quantitative characterization of orogens through isotopic mapping. Communications Earth & Environment. https://doi.org/10.1038/s43247-023-00779
[46] Wang, H., Xiao, W., Li, R., Chen, H., Tan, Z., Mao, Q., 2023. Late Neoproterozoic–Cambrian eclogites and high‐pressure granulites in the Central Qilian terrane (China) record the earliest subduction of Proto‐Tethyan Ocean in the eastern Tethysides. Journal of Metamorphic Geology 41, 849-878.
[47] Wang, H., Xiao, W., Li, R., Chen, H., Tan, Z., Mao, Q., Shi, M., 2023. High-grade complexes record the Late Permian-Middle Triassic arc metamorphism in the southernmost Altaids: Implications for the final closure of the Paleo-Asian Ocean. Lithos 442-443.
[48] Wang, K., Li, Y., Xiao, W., Zheng, J., Wang, C., Jiang, H., Brouwer, F.M., 2024. Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic granitoids along the Solonker suture zone in Inner Mongolia, China: Constraints on bidirectional subduction and closure timing of the Paleo-Asian Ocean. Gondwana Research 126, 1-21.
[49] Wang, L., Lin, S., Xiao, W., 2023. Yangtze and Cathaysia blocks of South China: Their separate positions in Gondwana until early Paleozoic juxtaposition. Geology.
[50] Wang, L., Zhang, K., Lin, S., Bédard, J.H., Santos, G.S., He, W., Yin, C., Xiao, W., 2023. Late Tonian (ca. 785 Ma) subduction-related mafic-ultramafic cumulates in the West Cathaysia terrane, South China. Precambrian Research 387.
[51] Wang, L.J., Lin, S., Xiao, W.J., 2023, Yangtze and Cathaysia blocks of South China: Their separate positions in Gondwana until early Paleozoic juxtaposition. Geology, v. 51, p. 723–727. https://doi.org/10.1130/G51362.1
[52] Wang, L.J., Zhang, K.X., Lin, S., Bédard, J.H., Santos, G.S., He, W.H., Y., C.Q., Xiao, W.J., 2023, Late Tonian (ca. 785 Ma) subduction-related mafic-ultramafic cumulates in the West Cathaysia terrane, South China. Precambrian Research, v. 387, No. 106980, https://doi.org/10.1016/j.precamres.2023.106980
[53] Wang, M., Mao, Q., Xiao, W., Yang, H., Wang, H., Li, R., 2023. Discovery of Neoproterozoic adakitic rocks in the Eastern Tianshan (NW China) of the southern Altaids. International Journal of Earth Sciences 112, 981-997.
[54] Wang, T., Huang, H., Zhang, J. J., Wang, C. Y., Cao, G. Y., Xiao, W. J., Yang, Q. D., Bao, X. W. Voluminous continental growth of the Altaids and its control on metallogeny[J]. National Science Review, 2023, 10(2), 1-16.
[55] Wang, Y., Wang, Y., Yin, J., Thomson, S.N., Xiao, W., He, Z., Chen, W., Cai, K., Wu, M., Meng, Y., 2023. Mesozoic exhumation of the northern West Junggar, NW China: Insights from low-temperature thermochronometers. Tectonophysics 862.
[56] Wang, Y.M., Wang, Y.N*., Yin, J.Y*., Thomson, S.N., Xiao, W.J., He, Z.Y., Chen, W., Cai, K.D., Wu, M.X., Meng, Y., 2023. Mesozoic exhumation of the northern West Junggar, NW China: insights from low-temperature thermochronometers. Tectonophysics, 862, 229939.
[57] Wu, M., Yin, J., He, Z., Xiao, W., Wang, Y., Chen, W., Wang, Y., Sun, J., Li, D., Meng, Y., 2023. Mesozoic Thermo-Tectonic Evolution of the Western Altai Orogenic Belt (NW China): Insights from Low-Temperature Thermochronology. Lithosphere 2023.
[58] Wu, M.X., Yin, J.Y*., He, Z.Y*., Xiao, W.J., Wang, Y.N., Chen, W., Wang, Y.,M., Sun, J.B., Li, D.P., Meng. Y., 2023. Mesozoic thermo-tectonic evolution of the western Altai orogenic belt (NW China): Insights from low-temperature thermochronology. Lithosphere, (Special 14): 8161000.
[59] Xia, Y.F., Wang, L.J., Rayner, N., Lin, S., Xiao, W.J., Yin, C.Q., Qian, J.H., Liu, H., Zhao, X.L., 2023, Metamorphic P-T-t evolution deciphered from episodic monazite growth in granulites of the Chencai Complex and implications for the Early Paleozoic orogeny, West Cathaysia Terrane, South China. Geological Society, London, Special Publications, v. 542, https://doi.org/10.1144/SP542-2023-22
[60] Xu Bo, Hou Zeng-Qian, William L. Griffin, Lu Yong-Jun, Belousova Elena, Xu Ji-Feng, Suzanne Y. O’Reilly, 2021. Recycled volatiles determine fertility of porphyry deposits in collisional settings. American Mineralogist, 106, 656-661.
[61] Xu Bo, Hou Zeng-Qian, William L. Griffin, Suzanne Y. O’Reilly, Zheng Yuan-Chuan, Wang Tao, Fu Bin, Xu Ji-Feng, 2022. In-situ mineralogical interpretation of the mantle geophysical signature of the Gangdese Cu-porphyry mineral system. Gondwana Research, 111, 53–63.
[62] Xu Bo, Hou Zeng-Qian, William L. Griffin, Yu Jia-Xing, Long Tao, Zhao Yi, Wang Tao, 2022. Apatite halogens and Sr–O and zircon Hf–O isotopes: recycled volatiles in Jurassic porphyry ore systems in southern Tibet. Chemical Geology, 605, 120924.
[63] Xu Bo, Hou Zeng-Qian, William L. Griffin, Zheng Yuan-Chuan, Guo Zhen, Hou Jue, M. Santosh, Suzanne Yvette O’Reilly, 2021. Cenozoic lithospheric architecture and metallogenesis in southeastern Tibet. Earth-Science Reviews, 214, 103472.
[64] Xu Bo, Hou Zeng-Qian, William L. Griffin, Zhou Ye, Zhang Yu-Fei, Lu Yong-Jun, Belousova Elena, Xu Ji-Feng, 2021. Elevated Magmatic Chlorine and Sulfur Concentrations in the Eocene–Oligocene Machangqing Cu–Mo Porphyry System. Economic Geology, 24, 257-276.
[65] Yin J.Y*., Wang, Y.N*., Hodges, K.V., Xiao, W.J., Thomson, S.N., Chen, W., Yuan, C., Sun, M., Cai, K.D., Sun, J.B., 2023. Episodic long‐term exhumation of the Tianshan orogenic belt: New insights from multiple low‐temperature thermochronometers. Tectonics, 42, e2022TC007469.
[66] Yin, J., Wang, Y., Hodges, K.V., Xiao, W., Thomson, S.N., Chen, W., Yuan, C., Sun, M., Cai, K., Sun, J., 2023. Episodic Long‐Term Exhumation of the Tianshan Orogenic Belt: New Insights From Multiple Low‐Temperature Thermochronometers. Tectonics 42.
[67] Yuan, L.L., Chai, P., Hou, Z.Q., Zheng, Y.C., Quan, H.H., 2023. Implications of Nd isotopic mapping for crustal composition and metallogenesis in the Sanjiang orogenic belt (SW China). Frontiers in Earth Science 11. https://doi.org/10.3389/feart.2023.1131338.
[68] Zeng, H., Song, D., Xiao, W., Li, P., 2023. Accretion of an early Paleozoic Alaska-type arc onto northern North China: Implications for continental growth of the Central Asian orogenic belt. GSA Bulletin.
[69] Zeng, H., Song, D., Xiao, W., Li, P., 2023. Origin and tectonic evolution of the Langshan (NW China): Insights from Proterozoic magmatic and sedimentary records. Precambrian Research 386.
[70] Zhang ZY, Hou ZQ, 2023. Lithospheric architecture revealed by Hf isotopic mapping and its control on the giant critical metallic ore systems in South China. Geology, in press.
[71] Zhang, H.J., Lü, Q.T., Wang, X.L., Han, S.C., Liu, L.J., Gao, L., Wang, R., Hou, Z.Q., 2023. Lithospheric delamination evidenced from seismic imaging and its controls on the Mesozoic basin and range magmatic province in South China. Nature Communications, 14, 2718. https://doi.org/10.1038/s41467-023-37855-5. See data at https://doi.org/10.1038/s41467-023-37855-5.
[72] Zhang, J., Qiu, Z., Li, S., Gao, S., Guo, R., Ma, X., Qiu, J., Li, S., Tao, H., Chen, J., Li, J., Xiao, W., 2023. Linking environmental changes and organic matter enrichment in the middle part of the Yanchang Formation (Ordos Basin, China) to the rollback of an oceanic slab in the eastern Paleo-Tethys. Sedimentary Geology 455.
[73] Zhang, J.e., Chen, Y., Xiao, W., Wakabayashi, J., Song, S., Luo, J., Zhao, Y., 2023. Architecture of ophiolitic mélanges in the Junggar region, NW China. Geosystems and Geoenvironment 2.
[74] Zhang, J.e., Xiao, W., Zhang, B., Wakabayashi, J., Cai, F., Sein, K., 2023. Continental‐scale shearing triggered by Oligocene subduction in Myanmar‐Indochina, SE Asia. Geological Journal.
[75] Zhang, Y.F., Xu, B., Hou, Z.Q., Zhao, Y., Wang, Z.X., Shen, J.Q., Kou, G.Y., Yu, J.X., Li, E.Q., 2023. Zircon xenocryst geochronology and implications for the Lhasa terrane evolution: Insights from Cenozoic volcanic rocks (Coqen, Tibet). Journal of Asian Earth Sciences 255, 105763. https://doi.org/10.1016/j.jseaes.2023.105763.
[76] Zhang, Y.Y., Sun, M., Yin, J.Y*., Yuan, C., Sun, Z., Xia, X.P., 2022. Maturation of East Junggar oceanic arc related to supracrustal recycling driven by arc-arc collision: Perspectives from zircon Hf–O isotopes. International Journal of Earth Sciences, 111, 2519–2533.
[77] Zhang, Y.Y., Sun, M., Yin, J.Y*., Yuan, C., Sun, Z., Xia, X.P., 2022. Subduction initiation of the western Paleo-Asian Ocean linked to global tectonic re-organization: Insights from Cambrian island-arc magmatism within West Junggar, NW China. Geological Society of America Bulletin, 134 (11-12): 3099–3112.
[78] Zhang, Z.Y.*, Hou, Z.Q.*, Lü, Q.T., Zhang, X.W., Pan, X.F., Fan, X.K., Zhang, Y.Q., Wang, C.G., Lü, Yongjun. 2023. Crustal architectural controls on critical metal ore systems in South China based on Hf isotopic mapping. Geology, 51: 738-742.
[79] Zhao, L., Li, Y., Cheng, S., Li, Z., Zheng, J., Qiu, H., Bai, X., Xiao, W., Brouwer, F.M., 2024. Geochronology and geochemistry of early Paleozoic magmatism in the Qilian orogen: Constraints on closure of the Proto-Tethys Ocean. Gondwana Research 126, 223-242.
[80] Zhao, L., Li, Y., Xiang, H., Zheng, J., Xiao, W., Chen, X., Jiang, H., Xie, Y., Brouwer, F.M., 2023. A Devonian Shoshonitic Appinite–Granite Suite in the North Qinling Orogenic Belt: Implications for Partial Melting of a Water-Fluxed Lithospheric Mantle in an Extensional Setting. Journal of Petrology 64.
[81] Zhao, T., Xiao, W., Mao, Q., Yang, H., Abuduxun, N., Li, P., 2023. The Wulanmoren Accretionary Complex Unravels Early Devonian to Late Triassic Multiple‐Arc Amalgamation in the Tianshan Orogen (NW China). Earth and Space Science 10.
[82] Zheng, R., Li, J., Xiao, W., Zhang, J., 2023. Long-lived subduction retreating led to continental rifting along the northern Gondwana: Insights from Devonian igneous rocks and ophiolite in the Beishan orogenic collage. Lithos 454-455.
[83] Zheng, R., Zhang, J., Xiao, W., 2023. Continental crust delamination in a retreating subduction zone: A case study in the southern Alxa (Inner Mongolia, China), Central Asian Orogenic Belt. GSA Bulletin.
[84] Zhou, L., Su, Y.P., Zheng, J.P., Dai, H.K., Ma, Q., Wang, J., Zhang, S., Zhang, X.H., Xiong, K., 2023. Generation of continental intraplate alkaline basalts by edge-driven convection: Insights from the Cenozoic basalts beyond the Big Mantle Wedge. Chemical Geology, 632,121537, https://doi.org/10.1016/j.chemgeo.2023. 121537.
[85] Zhou, Y., Hou, Z.Q., Wang, R., Xu, B., Evans, N.J., He, W.Y., Zheng, Y.C., Zhou, J.X., 2023. Origin of biotite-rich xenoliths in the Eocene Beiya porphyry: Implications for upper-crustal Au remobilization and formation of giant porphyry Au systems in a collisional setting. Lithos 442–443, 107063. https://doi.org/10.1016/j.lithos.2023.107063.
[86] Zhu X., Huang Y., Wang T., Huang H., Zheng H., 2023. Crustal structures inferred from Bouguer gravity anomalies in the Altai Orogen, Junggar Basin, Tianshan Orogen, and Tarim Basin, Journal of Asian Earth Sciences, 257, 105842. https://doi.org/10.1016/j.jseaes.2023.105842.
[87] 黄毓森, 朱小三, 王涛, 卢民杰, 童英, 黄河. 2023. 基于航磁资料对智利塔拉帕卡地区的构造解释. 地球物理学进展, 待刊.
[88] 孟云, 尹继元 , 肖文交, Stuart N. Thomson, 王雅美, 陈文, 李大鹏, 吴明轩, 2023.帕米尔东缘晚中新世以来多阶段隆升-剥露过程: 来自裂变径迹和(U-Th)/He低温热年代学的制约. 岩石学报,39(12): 3685-3700.
[89] 唐波浪, 刘英超*, 岳龙龙, 马旺, and 庄亮亮, 2023, 云南华昌山Pb-Zn矿床热液流体演化:方解石REE及C-O同位素证据: 地质学报, v. 97, p. 1178-1191.
[90] 陶再礼,尹继元*,袁超,肖文交,陈文,陈岳龙,王雅美,杨帆,2022. 西昆仑造山带晚奥陶世侵入岩的岩石成因:对原特提斯洋俯冲过程的制约. 岩石学报,38(11):3321-3340.
Publications(2022)
[1]Abuduxun, N., Windley, B.F., Xiao, W., Zhang, J., Chen, Y., Huang, P., Gan, J., Sang, M., 2022. Carboniferous tectonic incorporation of a Devonian seamount and oceanic crust into the South Tianshan accretionary orogen in the southern Altaids. International Journal of Earth Sciences, 111:2535–2553.
[2]Abuduxun, N., Xiao, W., Windley, B.F., Huang, P., Yang, H., Gan, J., Sang, M., Liu, X.J., 2022. Early Permian syn-subduction extension in the South Tianshan (NW China): Insights from A-type granitoids in the southern Altaids. Frontiers in Earth Science, 9, 831677.
[3]Afonso, J.C., Ben-Mansour, W., O’Reilly, S.Y., Griffin, W.L., Salajeghegh, F., Foley, S., Begg, G., Selway, K., Macdonald, A., Januszczak, N., Fomin, I., Nyblade, A.A. and Yang, Y. 2022. Thermochemical structure and evolution of cratonic lithosphere in central and southern Africa. Nature Geoscience, 15, 405-410.
[4]Akbulut, M., González-Jiménez, J.M., Belousova, E., Colás Ginés, V., Farré de Pablo, J., Pujol Solà, N. and Proenza, J.A. 2022. A record of metasomatism and crustal contamination of the Mediterranean lithosphere in chromitites of the Orhaneli Ophiolite Complex (NW Türkiye). Journal of Asian Earth Sciences, 236, 105311.
[5]Alard, O., Halimulati, A., Gorojovsky, L. and Wieland, P. 2022. Sulfur mass fraction in 37 Geological Reference Materials by Titration, XRF and Elemental Analyser. Geostandards and Geoanalytical Research, ID GGR-0933.
[6]Amulele, G.M. Lanati, A.W. and Clark, S.M. 2022. The electrical conductivity of albite feldspar: implications for oceanic lower crustal sequences and subduction zones. American Mineralogist, 107, 614–624.
[7]Cao, L., Yuan, H., Zhao, L., Zhao, M., Huang, H., Hao, T. and Qiu, X. 2022. Fault-controlled regional magmatism and mineral deposition in central Cathaysia - Evidence from ambient noise tomography. Science China - Earth Sciences, 65, 1715-1735.
[8]Choulet, F., Seltmann, R., Divaev, F., Shatov, V., Konopelko, D., 2022. Mantle-triggered intrusions in the western Central Asian Orogenic Belt: implications for the fertilisation of the crust in Tian Shan, Uzbekistan. International Journal of Earth Sciences, 1-24.
[9]Daczko, N.R. and Piazolo. 2022. Recognition of melferite – A rock formed in syn-deformational high-strain melt-transfer zones through sub-solidus rocks: A review and synthesis of microstructural criteria. Lithos, 430-431, 106850.
[10]de Vries, J., Lin, S., van Staal, C.R., Yakymchuk, C., 2022. A structural–metamorphic study of the Gubaoquan eclogites and enveloping rock units in the Beishan Orogenic Collage, NW China, with emphasis on the structural evolution, nature of juxtaposition and exhumation. International Journal of Earth Sciences, v. 111, p. 2603–2632, https://doi.org/10.1007/s00531-022-02192-3.
[11]Fatemeh Sarjoughian, Sholeh Pourkarim, Rasoul Esmaeili, Songjian Ao, Wenjiao Xiao & David R. Lentz2022. Bulk chemistry and Hf isotope ratios of the Almogholagh Intrusive Complex, western Iran: a consequence of an extensional tectonic regime in the Late Jurassic, International Geology Review, DOI: 10.1080/00206814.2022.2114020
[12]Ganbat, A., Tsujimori, T., Miao, L., Safonova, I., Pastor-Galán, D., Anaad, C., Aoki, S., Aoki, K., & Chimedsuren, M. 2022. Age, petrogenesis, and tectonic implications of the late Permian magmatic rocks in the Middle Gobi volcanoplutonic Belt, Mongolia. Island Arc, 31(1), e12457. DOI:10.1111/iar.12457
[13]Gao, Y., Chen, L., Talebian, M., Wu, Z., Wang, X., Lan, H., Ai, Y., Jiang, M., Hou, G., Khatib, M.M., Zhu, R., 2022. Nature and structural heterogeneities of the lithosphere control the continental deformation in the northeastern and eastern Iranian plateau as revealed by shear-wave splitting observations. Earth and Planetary Science Letters, 578, 117284.
[14]Gu, J.; Xu, B., Li, S., Zhao, Y. 2022. Titanite Spectroscopy and In Situ LA-ICP-MS U‐Pb Geochronology of Mogok, Myanmar. Crystals,1050.DOI: 10.3390/ cryst12081050.
[15]Hong, T., Santos, G.S., van Staal, C.R., Ji, W.H., Lin, S., 2022. Mapping uncovered a multi-phase arc--ack-arc system in the southern Beishan in the Permian. National Science Review, https://doi.org/10.1093/nsr/nwac204.
[16]Huang, J., Huang, J.-X., Griffin, W.L. and Huang, F. 2022. Zn-, Mg- and O-isotope evidence for the origin of mantle eclogites from Roberts Victor kimberlite (Kaapvaal Craton, South Africa). Geology, 50, 593-597.
[17]Jiang, W., Yu, J.-H., Griffin, W.L., Wang, F., Wang, X., Pham, T and Nguyen, D. 2022. Where did the Kontum Massif in central Vietnam come from?. Precambrian Research, 377, 106725.
[18]Khalimov, G., Yang, H., Sang, M., Xiao, W., Mamadjanov, Y., Aminov, J., Yogibekov, D., Liu, X., 2022. Late Paleozoic Shoshonitic Magmatism in the Southwestern Middle Tianshan (Tajikistan) of the Southwestern Altaids: Implications for Slab Roll-Back With Extensional Arc-Related Basins After Flat Subduction. Front. Earth Sci. 10:893751. doi: 10.3389/feart.2022.893751.
[19]Konopelko, D.L., Cherny, R.I., Petrov, S.V., Strekopytov, S., Seltmann, R., Vlasenko, N.S., Streopytov, V.V., Mamadjanov, Y.M., Wang, X.S., Plotinskaya, O.Y., Andreeva, E.M., 2022. The Mushiston Sn deposit in Tajik Tien Shan as the type locality for stannite-cassiterite-hydrostannate mineralization: New mineral chemistry data and genetic constraints. Journal of Geochemical Exploration, 107017.
[20]Lan, H., Chen, L., Chevrot, S., Talebian, M., Wang, X., Gao, Y., Zhang, J., Wu, Z., Shokati, M., Jiang, M., Ai, Y., Hou, G., Mao, M., Pham, T., Xiao, W., Zhu, R., 2022. Structure of the western Jaz Murian forearc basin, southeast Iran, revealed by autocorrelation and polarization analysis of teleseismic P and S waves. Journal of Geophysical Research: Solid Earth, 127(4), e2021JB023456.
[21]Li, L., Xiao, W., Windley, B.F., Mao, Q., Gan, J., Jia, X., Yang, H., Sang, M., 2022. Defining the Huangcaopo complex and gabbroic magmatism in the northern Harlik Mountains (NW China): Late Cambrian to latest Permian accretionary growth of the East Junggar Arc? Geological Journal, 57(3), 1022-1045.
[22]Li, L., Xiao, W., Windley, B.F., Yang, H., Jia, X., Sang, M., Abuduxun, N., Liu, Y., 2022. Early carboniferous rifting of the Harlik arc in the Eastern Tianshan (NW China): Response to rollback in the southern Altaids? American Journal of Science, 322(2), 313-350.
[23]Li, P., Sun, M., Narantsetseg, T., Jourdan, F., Hu, W., Yuan, C., 2022. First structural observation around the hinge of the Mongolian Orocline (Central Asia): Implications for the geodynamics of oroclinal bending and the evolution of the Mongol-Okhotsk Ocean. GSA Bulletin.
[24]Li, R., Ao, S., Xiao, W., Schulmann, K., Mao, Q., Song, D., ... & Bhandari, S., 2022. Tectonic Juxtaposition of Two Independent Paleoproterozoic Arcs by Cenozoic Duplexing in the Arun Tectonic Window of the Eastern Nepalese Himalaya. Frontiers in Earth Science, 10, 890171.
[25]Li, S., Miller, C.F., Wang, T., Xiao, W., Chew, D., 2022. Role of sediment in generating contemporaneous, diverse “type” granitoid magmas. Geology, 50(4), 427-431.
[26]Li, T., Jiang, M., Zhao, L., Yao, W., Chen, L., Chu, Y., Sun, B., Ai, Y., Wan, B., Gessner, K. and Yuan, H. 2022. Wedge Tectonics in South China: constraints from new seismic data. Science Bulletin, 67, 1496-1507.
[27]Li, W., Chen, Y., Yuan, X., Xiao, W., & Windley, B. F. (2022). Intracontinental deformation of the Tianshan Orogen in response to India-Asia collision. Nature communications, 13(1), 1-8.
[28]Li, Y., Xiao, W., Zheng, J., & Brouwer, F. M., 2022. Northward subduction of the South Qilian ocean: Insights from early Paleozoic magmatism in the South-Central Qilian belts. Geosystems and Geoenvironment, 1(1), 100013.
[
29]Liu, D., Zhao, L., Yuan, H., Sun, W. and Xiao, W. 2022. Receiver Function Mapping of the Mantle Transition Zone Beneath the Tian Shan Orogenic Belt. Journal of Geophysical Research, 127, e2022JB024635.
[30]Liu, L., Gao, S.S., Liu, K.H., Griffin, W.L., Li, S., Tong, S. and Ning J. 2022. Mantle dynamics of the North China Craton: new insights from mantle transition zone imaging constrained by P-to-S receiver functions. Geophysical Journal International, 231, 629-637.
[31]Liu, Y. C., Song, Y. C., Hou, Z. Q., Xi, D., Li, S. P., Yue, L. L., Ma, W., Tang, B. L., 2022, Palynological constraints on the age of the Mississippi Valley-type Changdong Pb-Zn deposit, Sanjiang belt, West China: Science China Earth Sciences, 65 (1): 167-181. DOI:10.1007/s11430-020-9838-4
[32]Liu, Y., Song, Y., Hou, Z., Xi, D., Li, S., Yue, L., Ma, W., Tang, B., 2022. Palynological constraints on the age of the Mississippi Valley-type Changdong Pb-Zn deposit, Sanjiang belt, West China. Science China Earth Sciences, 65(1), 167-181.
[33]Lu, J.G., Griffin, W.L., Huang, J.X., Dai, H.K., Castillo-Oliver, M., O’Reilly, S.Y., 2022. Structure and composition of the lithosphere beneath Mount Carmel, North Israel. Contributions to Mineralogy and Petrology, 177(2), 1-16.
[34]Lu, J.G., Griffin, W.L., Huang, J.-X., Dai, H.-K., Castillo-Oliver, M., and O’Reilly, S.Y. 2022. Structure and composition of the lithosphere beneath Mount Carmel, North Israel. Contributions to Mineralogy and Petrology, 177, 29.
[35]Lu, T.Y., He, Z.Y., Klemd, R., 2022. Identifying crystal accumulation and melt extraction during formation of high-silica granite. Geology, 50(2), 216-221.
[36]Ma, W., Liu, Y. C., Yang, Z., Marten, H. J., Li, Z., Zhao, M., Yue, L., Zhao, S., 2022. Petrogenesis of the quartz diorite from the Lietinggang-Leqingla Pb-Zn-Fe-Cu-(Mo) deposit in southern Tibet: Implications for the genesis of a skarn-type polymetallic deposit in the Tibetan-Himalayan collisional orogen. Ore Geology Reviews, 145: 104920. DOI:10.1016/j.oregeorev.2022.104920
[37]Malitch, K.N., Puchtel, I.S., Belousova, E.A. and Badanina, I.Y. 2022. A combined Re-Os and Pt-Os isotope and HSE abundance study of Ru-Os-Ir alloys from the Kunar and Unga placer deposits, the Taimyr Peninsula, Polar Siberia. Minerals, 12, 1463.
[38]Mao, Q., Xiao, W., Ao, S., Li, R., Wang, H., Tan, Z., & Tan, W. 2022. Late Devonian to early Carboniferous roll-back related extension setting for the Tuwu-Yandong porphyry copper metallogenic belt in the Dananhu arc of the eastern Tianshan (NW China) in the southern Altaids. Ore Geology Reviews, 105060.
[39]Mao, Q., Xiao, W., Buckman, S., Huang, P., Ao, S., Song, D., Zhang, J., Sang, M., 2022. Deformational history of the Kanguer Subduction Complex in the Eastern Tianshan (NW China): Implications for Paleozoic‐Triassic multiple accretionary tectonics of the southern Altaids. Tectonics, e2022TC007527.
[40]Mao, Q., Xiao, W., Wang, H., Ao S., Windley, B.F., Song, D., Sang, M., Tan, Z., Li, R., Wang, M., 2022. Prolonged Late Mesoproterozoic to Late Triassic Tectonic Evolution of the Major Paleo- Asian Ocean in the Beishan Orogen (NW China) in the Southern Altaids. Front. Earth Sci. 9:825852. doi: 10.3389/feart.2021.825852
[41]Mathian, M., Chassé, M., Calas, G., Griffin, W.L., O’Reilly, S.Y., Buisson, T. and Allard, T. 2022. Insights on the Cenozoic climatic history of southeast Australia from kaolinite dating. Palaeogeography, Palaeoclimatology, Palaeoecology, 604, 111212.
[42]Moghadam, H.S., Arai, S., Griffin, W.L., Khedr, M.Z., Emilio, E., Henry, H., O’Reilly, S.Y. and Ghorbani, G. 2022. Geochemical Variability among Stratiform Chromitites and Ultramafic Rocks from Western Makran, South Iran. Lithos, 412-413, 106591.
[43]Moghadam, H.S., Griffin, W.L., Santos, J.F., Chen, R.-X., Karsli, O., Lucci, F., Sepidbar, F. and O’Reilly, S.Y. 2022. Geochronology, Geochemistry and Petrology of the Oligocene Magmatism in SE Segment of the UDMB, Iran. Lithos, 416-417, 106644.
[44]Moghadam, H.S., Li, Q.L., Griffin, W.L., Chiaradia, M., Hoernle, K., O’Reilly, S.Y., Esmaeili, R. 2022. The Middle-Late Cretaceous Zagros ophiolites, Iran: Linking of a 3000 km swath of subduction initiation fore-arc lithosphere from Troodos, Cyprus to Oman. Bulletin, 134(5-6), 1414-1442.
[45]Moghadam, H.S., Li, Q.-L., Griffin, W.L., Stern, R.J., Santos, J.F., Ducea, M.N., Ottley, C.J., Karsli, O., Sepidbar, F. and O’Reilly, S.Y. 2022. Temporal changes in subduction- to collision-related magmatism in the Neotethyan orogen: the southeast Iran example (Earth Science Review). Earth Science Review, 226, 103930.
[46]Moghadam, H.S., Li, Q.L., Stern, R.J., Griffin, W.L. and O’Reilly, S.Y. 2022. Zircon xenocrysts in Late Cretaceous magmatic rocks in the Kermanshah Ophiolite: Link to Iran continental crust supports the subduction initiation model. International Geology Review, DOI: 10.1080/00206814.2022.2043193.
[47]Muhtar, M. N., Wu, C. Z., Brzozowski, M. J., Zhang, W. F., Chen, B. Y., Lei, R. X., & Xiao, W. J. , 2022. Age and genesis of the Jinshan gold deposit in the Chinese North Tianshan: A link to large-scale strike–slip shearing events. Ore Geology Reviews, 142, 104734.
[48]Muhtar, M. N., Wu, C., Brzozowski, M. J., Lei, R., Wang, M., & Xiao, W. 2022. Permian ridge subduction-related magmatism in the Eastern Tianshan: Implications for the evolution of the southern Altaids. Lithos, 428, 106815.
[49]Muhtar, M.N., Wu, C.Z., Brzozowski, M.J., Lei, R., Wang, M., Xiao, W., 2022. Permian arc magmatism in the eastern Tianshan: implications for the evolution of the southern Altaids. Social Science Electronic Publishing.
[50]Muhtar, M.N., Wu, C.Z., Brzozowski, M.J., Zhang, W.F., Chen, B.Y., Lei, R.X., Xiao, W.J., 2022. Age and genesis of the Jinshan gold deposit in the Chinese North Tianshan: A link to large-scale strike–slip shearing events. Ore Geology Reviews, 142, 104734.
[51]Mukhin, P., Mirkamalov, R. & Seltmann, R. 2022.Structure of the Muruntau gold ore region in the Kyzyl-Kum desert (Central Asia). Int J Earth Sci (Geol Rundsch). DOI:10.1007/s00531-022-02262-6.
[52]Özaydın, S., Selway, K., Griffin, W.L. and Moorkamp, M. 2022. Probing the southern African lithosphere with magnetotellurics, Part II, linking electrical conductivity, composition and tectonomagmatic evolution. Journal of Geophysical Research: Solid Earth, 127, e2021JB023105.
[53]Portner, R., Dreyer, B.M., Clague, D.A., Daczko, N.R. and Castillo, P.R. 2022. Oceanic zircon records rhyolite formation on the Alarcon Rise mid-ocean ridge. Journal of Petrology, 63, egac040.
[54]Safonova I., Perfilova A. (2022) Survived and disappeared intra-oceanic arcs of the Paleo-Asian Ocean: evidence from Kazakhstan. National Science Review (Reviews in Earth Sciences). https://doi.org/10.1093/nsr/nwac215.
[55]Safonova, I., Perfilova, A., Obut, O. et al. Traces of intra-oceanic arcs recorded in sandstones of eastern Kazakhstan: implications from U–Pb detrital zircon ages, geochemistry, and Nd–Hf isotopes. Int J Earth Sci (Geol Rundsch) 111, 2449–2468 (2022). DOI: 10.1007/s00531-021-02059-z.
[56]Safonova, I., Perfilova, A., Savinskiy, I., Kotler, P., Sun, M., Wang B., 2022. Sandstones of the Itmurundy accretionary complex, central Kazakhstan, as archives of arc magmatism and subduction erosion: Evidence from U-Pb zircon ages, geochemistry and Hf-Nd isotopes, Gondwana Research, 35-52, DOI:10.1016/j.gr.2022.06.018.
[57]Sang, M., Xiao, W., Windley, B.F.,Mao, Q., Zhang, Z., Wang, H., Yang, H., Ao, S., Song, D., Gan, J., 2022. From Middle Neoproterozoic Extension to Paleozoic Accretion and Collision of the Eastern Tiklik Belt (the Western Kunlun Orogen, NW China). Minerals,12, 166. https://doi.org/10.3390/min12020166.
[58]Santos, G.S., Bedard, J.H., van Staal, C.R., Lin, S., Wang, K., in press, Geology of the Liuyuan Complex, NW China: a Permian back-arc basin ophiolite at the southern edge of the Central Asian Orogenic Belt, Geological Society of America Bulletin, https://doi.org/10.1130/B36736.1
[59]Santos, G.S., Hong, T., van Staal, C.R., Bedard, J.H., Lin, S., Wang, K., 2022, Permian back-arc basin formation and arc migration in the southern Central Asian Orogenic Belt, NW China, Geological Journal, https://doi.org/10.1002/gj.4609.
[60]Savinskiy, I., Safonova, I., Perfilova, A., Kotler, P., Sato, T., Maruyama, S., 2022. A story of Devonian ocean plate stratigraphy hosted by the Ulaanbaatar accretionary complex, northern Mongolia: implications from geological, structural and U–Pb detrital zircon data. International Journal of Earth Sciences, 1-24.
[61]Silva, D., Piazolo, S., and Daczko, N.R. 2022. Trapped K-feldspar phenocrysts as a signature of melt migration pathways within active high-strain zones. Journal of Metamorphic Geology, (in press, online).
[62]Song, P., Wang, T., Tong, Y., Zhang, J.J., Huang, H., 2022. Late Carboniferous intrusions along the Kalamaili suture zone, southwestern Central Asian Orogenic Belt (CAOB): implications for a tectonic switch from subduction to collision, International Geology Review.DOI: 10.1080/00206814.2022.2098834.
[63]Sun, Q., Zhao, X., Xue, C., Seltmann, R., McClenaghan, S.H., Li, Y., Symons, D.T., 2022. Neoproterozoic tectonic shift from collisional orogenesis to intraplate extension in the Yili Block, southern Central Asian Orogenic Belt. Precambrian Research, 374, 106626.
[64]Tan, Z., Xiao, W., Mao, Q., Wang, H., Sang, M., Li R., Gao, L., Guo, Y., Gan, J., Liu, Y., Wan, B., 2022. Final closure of the Paleo Asian Ocean basin in the early Triassic. Communications Earth & Environment, 3, 259, https://doi.org/10.1038/s43247-022-00578-4.
[65]Tan, Z., Xiao, W., Mao, Q., Wang, H., Sang, M., Li, R., Gao, L., Wan, B., 2022. Triassic closure of South Tianshan Ocean: Evidence from provenance analysis of High-Pressure relics-bearing fore-arc sediments and multi-disciplinary data. DOI: https://doi.org/10.21203/rs.3.rs-1551759/v1.
[66]Tang, Q., Sun, W., Ao, S., Fu, L.Y., Xiao, W., 2022. Strong lateral heterogeneities of upper mantle shear-wave structures beneath the central and eastern Tien Shan. International Journal of Earth Sciences, 1-15.
[67]Tao, Z., Yin, J., Chen, W., Chen, Y., Sun, J., Xu, Z., 2022. Zircon U-Pb Ages and Tectonic Implications of Late Paleozoic Volcanic Rocks in the Western Tianshan, North Xinjiang, China. Journal of Earth Science, 1-17.
[68]Tao, Z., Yin, J., Sun, M., Wang, T., Yuan, C., Chen, W., Huang, H., Seltmann, R., Thomson, S.N., Chen, Y., 2022. Spatial and temporal variations of geochemical and isotopic compositions of Paleozoic magmatic rocks in the Western Tianshan, NW China: a magmatic response of the Advancing and Retreating Subduction. Journal of Asian Earth Sciences, 105112.
[69]Tao, Z., Yin, J., Xiao, W., Seltmann, R., Chen, W., Sun, M., Wang, T., Yuan, C., Thomson, S.N., Chen, Y., Xia, X., 2022. Contrasting styles of peraluminous S-type and I-type granitic magmatism: Identification and implications for the accretionary history of the Chinese South Tianshan. American Journal of Science, 322(2), 280-312.
[70]Tian, Z., Liu, P., Wen, F., Zhu, H., Wang, W., Liu, F., 2022. Mesoproterozoic accretionary orogenesis: Evidence from∼ 1.4 Ga metamorphism on the southeastern margin of the North China Craton. Journal of Asian Earth Sciences, 105247.
[71]Tilhac, R., Begg, G.C., O’Reilly, S.Y. and Griffin, W.L. 2022. A global review of Hf-Nd isotopes: new perspectives on the chicken-and-egg problem of ancient mantle signatures. Chemical geology, 609, 121039.
[72]Volante, S., Collins, W.J., Barrote, V., Nordsvan, A.R., Pourteau, A., Li, Z.X., Li, J., Beams, S., 2022. Spatio–temporal evolution of Mesoproterozoic magmatism in NE Australia: A hybrid tectonic model for final Nuna assembly. Precambrian Research, 372, 106602.
[73]Wang, H., Xiao, W., Windley, B. F., Zhang, Q. W. L., Tan, Z., Wu, C., & Shi, M. 2022. Diverse P-T-t paths reveal high-grade metamorphosed forearc complexes in NW China. Journal of Geophysical Research: Solid Earth, 127, e2022JB024309. https://doi. org/10.1029/2022JB024309.
[74]Wang, K., Xiao, W., Windley, B. F., Mao, Q., Ji, W., Sang, M., et al. 2022. The Dashui subduction complex in the Eastern Tianshan-Beishan Orogen (NW China): Long-lasting subduction-accretion terminated by unique mid-Triassic strike- slip juxtaposition of arcs in the southern Altaids. Tectonics, 41, e2021TC007190. https://doi.org/10.1029/2021TC007190.
[75]Wang, M., Xiao, W., Mao, Q., Yang, H., Wang, H., Li R., 2022. Episodic Paleozoic Adakitic Magmatism in the Eastern Tianshan, Southern Altaids: Implications for Petrogenesis and Geodynamics. Acta Geologica Sinica‐English Edition 96 (4), 1136-1149.
[76]Wang, T., Tong, Y., Xiao, W., Guo, L., Windley, B. F., Donskaya, T., Li, S., Tssrendash, N., Zhang, J., 2022. Rollback, scissor-like closure of the Mongol-Okhotsk Ocean and formation of an orocline: magmatic migration based on a large archive of age data. National science review, 9(5), nwab210.DOI:10.1093/nsr/nwab210
[77]Xiao, W., Pirajno, F., Seltmann, R., Safonova, I., Chen, Y., & Muhtar, M. N., 2022. Metallogeny of the Southern Altaids: Key to understanding the accretionary tectonics and crustal evolution of Central
Asia. Ore Geology Reviews, 144, 104871.
[78]Xiao, W., Şengör, A. C., Chai, Y., Lin, S., Ao, S., Song, D., 2022. Tectonics and Sedimentology of Accretionary and Collisional Orogens. Journal of Asian Earth Sciences, 105270.
[79]Xiong, Q., Dai, H.-K., Zheng, J.P., Griffin, W.L., Zheng, H.D., Wang, L. and O’Reilly, S.Y. 2022. Vertical depletion of ophiolitic mantle reflects melt focusing and interaction in the asthenospheric
column under oceanic spreading centers. Nature Communications, https://doi.org/10.1038/s41467-022-34781-w.
[80]Xu B., Hou Z. Q.,Griffin WL., O'Reilly, S. Y., Zheng Y., Wang T., Fu B., Xu J. In-situ mineralogical interpretation of the mantle geophysical signature of the Gangdese Cu-porphyry mineral system. Gondwana Research. 2022.DOI: 10.1016/j.gr.2022.07.005.
[81]Xu, B., Hou, Z. Q., Griffin, W. L., O’Reilly, S. Y., 2022. Apatite halogens and Sr–O and zircon Hf–O isotopes: recycled volatiles in Jurassic porphyry ore systems in southern Tibet. Chemical Geology10.DOI:10.1130/G38466.11016/j.chemgeo.2022.120924.
[82]Xu, B., Hou, Z. Q., Griffin, W. L., Zhou,Y., Zhang, Y.F., Lu, Y.J., Belousova. E.A, Xu, J.F., O’Reilly, S. Y., 2021. Elevated Magmatic Chlorine and Sulfur Concentrations in the Eocene–Oligocene Machangqing Cu–Mo Porphyry System. SEG Special Publications, 24 (2), 257–276.DOI:10.5382/SP.24.14.
[83]Xu, B., Hou, Z.-Q., Griffin, W.L., O'Reilly, S.Y., Zheng, Y.-C., Wang, T., Fu, B. and Xua J.-F. 2022. In-situ mineralogical interpretation of the mantle geophysical signature of the Gangdese Cu-porphyry mineral system. Gondwana Research, 111, 53-63.
[84]Yu, J.X., Xu, B., Zhao, Y., Wang, Z.X., Zhang, Y.F., Kou, G.Y., 2022. In situ Sr–O isotopic and elemental compositions of apatite and zircon from Pengcuolin granodiorites: implications for Jurassic metallogenic variation in the southern Tibet. Ore Geology Reviews. DOI:104869.10.1016/j.oregeorev.2022.104869.
[85]Yu, J.X., Xu, B., Zhao, Y., Wang, Z.X., Zhang, Y.F., Kou, G.Y., 2022. In situ Sr-O isotopic and elemental compositions of apatite and zircon from Pengcuolin granodiorites: Implications for Jurassic metallogenic variation in the southern tibet. Ore Geology Reviews, 145, 104869.
[86]Yuan, P, Y.; Zhao, Y; Xu, B. A Study on the Mineralogy and Volatile Fraction of Scapolite from Mogok, Myanmar. Crystals 2022, 12.
[87]Yuan, P., Xu,B., Wang, Z., Liu, D., 2022. A Study on Apatite from Mesozoic Alkaline Intrusive Complexes, Central High Atlas, Morocco. Crystals, 12(4), 461.
[88]Yue, L., Liu, Y., Song, Y., Ma, W., Zhuang, L., Tang, B., 2022. Karst-hosted Mississippi Valley-type Pb–Zn mineralization in fold-thrust systems: a case study of the Changdong deposit in the Sanjiang Belt, China. Mineralium Deposita, 1-22.
[89]Yue, L.L., Liu, Y.C., Song, Y.C., Ma, W., Zhuang, L. L., Tang, B. L., 2022. Karst-hosted Mississippi Valley-type Pb–Zn mineralization in fold-thrust systems: A case study of the Changdong deposit in the Sanjiang Belt, China. Mineralium Deposita, 57: 663-684. DOI:10.1007/s00126-021-01088-7.
[90]Zeng, H., Song, D., Xiao, W., Li, P., 2022. Field geology and provenance analyses of the Ganqimaodu accretionary complex (Inner Mongolia, China): implications for early Paleozoic tectonic evolution of the southern Central Asian Orogenic Belt. International Journal of Earth Sciences, 1-24.
[91]Zhang, J., Qu, J.F, Zhang, B.H, Zhao, H., Zheng, R.G., Liu, J.F., Hui, J., Niu, P.F., Yun, L., Zhao, S., Zhang,Y.P..2022. Determination of an intracontinental transform system along the southern Central Asian orogenic belt in the latest Paleozoic, American Journal of Science, 322 (7) 851-897.DOI: 10.2475/07.2022.01.
[92]Zhang, Y., Sun, M., Yin, J. et al.2022. Maturation of East Junggar oceanic arc related to supracrustal recycling driven by arc–arc collision: perspectives from zircon Hf–O isotopes. Int J Earth Sci (Geol Rundsch) 111, 2519–2533. DOI:10.1007/s00531-022-02164-7.
[93]Zhang, Y.Y, Sun, M., Yin, J.Y., Yuan, C., Sun, Z., Xia, X.P.,2022. Subduction initiation of the western Paleo-Asian Ocean linked to global tectonic reorganization: Insights from Cambrian island-arc magmatism within the West Junggar, NW China. GSA Bulletin. DOI: 10.1130/B36304.1.
[94]Zhang, Z., Xu, B., Yuan, P., Wang, Z., 2022. Gemological and Mineralogical Studies of Greenish Blue Apatite in Madagascar. Crystals 11.DOI: 10.3390/xxxxx.
[95]Zhao, H., Zhang, J., Zhang, B., Qu, J., Zhang, Y., Niu, P., Hui, J., Wang, Y., 2022. Structures and chronology of the Yabrai shear zone in the Alxa, NW China: Constraints on the late Paleozoic shear system in central segment of the Central Asian Orogenic Belt. Journal of Structural Geology, 158, 104575.DOI:10.1016/j.jsg.2022.104575.
[96]Zhao, L., Tyler, I.M., Gorczyk, W., Murdie, R.E., Gessner, K., Lu, Y., Smithies, H., Li, T., Yang, J., Zhan, A., Wan, B., Sun, B., Yuan, H. and the CWAS Group 2022. Seismic evidence of two cryptic sutures in Northwestern Australia: implications for the style of subduction during the Paleoproterozoic assembly of Columbia. Earth and Planetary Science Letters, 579, 117342.
[97]Zheng R.G., Li, J.Y., Zhang J., 2022. Juvenile hafnium isotopic compositions recording a late Carboniferous–Early Triassic retreating subduction in the southern Central Asian Orogenic Belt: A case study from the southern Alxa. GSA Bulletin.134 (5-6): 1375–1396.DOI: 10.1130/B35991.1.
[98]Xu, B., Hou, Z. Q., Griffin, W. L., O’Reilly, S. Y., 2022 Apatite halogens and Sr–O and zircon Hf–O isotopes: recycled volatiles in Jurassic porphyry ore systems in southern Tibet. Chemical Geology10, 120924. https://doi.org/10.1130/G38466.11016/j.chemgeo.2022.120924. See data athttps://doi.org/10.1130/G38466.11016/j.chemgeo.2022.120924.
[99]Xu B., Hou Z. Q.,Griffin WL., O'Reilly, S. Y., Zheng Y., Wang T., Fu B., Xu J. In-situ mineralogical interpretation of the mantle geophysical signature of the Gangdese Cu-porphyry mineral system. Gondwana Research. 2022, 111, 53-63. https://doi.org/10.1016/j.gr.2022.07.005. See data at https://doi.org/10.1016/j.gr.2022.07.005.
[100] Yu, J.X., Xu, B*., Zhao, Y., Wang, Z.X., Zhang, Y.F., Kou, G.Y., 2022. In situ Sr–O isotopic and elemental compositions of apatite and zircon from Pengcuolin granodiorites: implications for Jurassic metallogenic variation in the southern Tibet. Ore Geology Reviews, 145, 104869. https://doi.org/104869.10.1016/j.oregeorev.2022.104869. See data at https://doi.org/104869.10.1016/j.oregeorev.2022.104869.
[101] Yuan P., Xu, B*., Wang Z., Liu D. A Study on Apatite from Mesozoic Alkaline Intrusive Complexes, Central High Atlas, Morocco. Crystals2022, 12(4): 461.https://doi.org/10.3390/cryst12040461. See data at https://doi.org/10.3390/cryst12040461.
[102] Zhang, Z.; Xu, B*.; Yuan, P.; Wang, Z. Gemological and Mineralogical Studies of Greenish Blue Apatite in Madagascar. Crystals 2022, 11. https://doi.org/10.3390/cryst12081067. See data at https://doi.org/10.3390/cryst12081067.
[103] Gu, J.; Xu, B*.; Li, S.; Zhao, Y. Titanite Spectroscopy and In Situ LA-ICP-MS U‐Pb Geochronology of Mogok, Myanmar. Crystals 2022, 12, 1050. https://doi.org/10.3390/ cryst12081050. See data at https://doi.org/10.3390/ cryst12081050
[104]Yuan, P, Y.; Zhao, Y; Xu, B*. A Study on the Mineralogy and Volatile Fraction of Scapolite from Mogok, Myanmar. Crystals 2022, 12(12), 1779. https://doi.org/10.3390/cryst12121779. See data at https://doi.org/10.3390/cryst12121779.
Publications (2021)
[1] Safonova I , Perfilova A , Obut O , et al. Traces of intra-oceanic arcs recorded in sandstones of eastern Kazakhstan: implications from U–Pb detrital zircon ages, geochemistry, and Nd–Hf isotopes[J]. International Journal of Earth Sciences, 2021:1-20.
DOI: 10.1007/s00531-021-02059-z
[2] Ariuntsetseg Ganbat, Tatsuki Tsujimori, Laicheng Miao, Inna Safonova, Daniel Pastor-Galán, Chimedtseren Anaad, Munkhtsengel Baatar, Shogo Aoki, Kazumasa Aoki, Ilya Savinskiy,Late Paleozoic–Early Mesozoic granitoids in the Khangay-Khentey basin, Central Mongolia: Implication for the tectonic evolution of the Mongol-Okhotsk Ocean margin,Lithos,Volumes 404–405,2021,106455.
DOI:10.1016/j.lithos.2021.106455
[3] Dka B , Rs C , Ad C , et al. Adakite-like granitoids of Songkultau: A relic of juvenile Cambrian arc in Kyrgyz Tien Shan - ScienceDirect[J]. Geoscience Frontiers, 2021, 12( 1):147-160.
[4]Xu, B. , Hou, Z. , Griffin, W. L. , Zheng, Y. , Wang T. , & O'Reilly, S. Y. . 2021. Cenozoic lithospheric architecture and metallogenesis in southeastern Tibet. Earth-Science Reviews.
DOI:10.1016/j.earscirev.2020.103472
[5] Xu, B., Hou, Z. Q., Griffin, W. L., Lu, Y., Belousova, E., Xu, J. F., & O'Reilly, S. Y. 2021. Recycled volatiles determine fertility of porphyry deposits in collisional settings. American Mineralogist, 106(4), 656-661.
[6]Xu, B., Hou, Z. Q., Griffin, W. L., Zhou,Y., Zhang, Y.F., Lu, Y.J., Belousova. E.A, Xu, J.F., O’Reilly, S. Y., 2021. Elevated Magmatic Chlorine and Sulfur Concentrations in the Eocene–Oligocene Machangqing Cu–Mo Porphyry System. Economic Geology (in press).
[7] Xu, B.; Kou, G.; Etschmann, B.; Liu, D.; Brugger, J., 2020, Spectroscopic, Raman, EMPA, Micro-XRF and Micro-XANES Analyses of Sulphur Concentration and Oxidation State of Natural Apatite Crystals. Crystals 10, 1032.
[8] Kou G ., Xu, B*., et.al., 2021, Geology and petrogenesis of the Sungun deposits: Implications for the genesis of porSphyry-type mineralisation in the NW Urumieh–Dokhtar magmatic belt,Iran, Ore Geology Reviews.
[9] Shen, J. Q., Hu, Z. K., Cui, S. Y., Zhang, Y. F., Li, E. Q., Liang, W., & Xu, B*. 2021. A Study on Beryl in the Cuonadong Be-W-Sn Polymetallic Deposit, Longzi County, Tibet, China. Crystals, 11(7), 777.
[10] Wu D , Li S , Chew D , et al. Permian-Triassic magmatic evolution of granitoids from the southeastern Central Asian Orogenic Belt: Implications for accretion leading to collision[J]. Science China Earth Sciences, 2021, 64(5):788-806.
[11] Wang C Y , Meng E , Lin S , et al. Late Neoarchean metavolcanic rocks from the Tonghua area, Southern Jilin Province, China: Constraints on the formation and evolution of the northeastern North China Craton[J]. Precambrian Research, 2021, 362(3):106266.
DOI:10.1016/j.precamres.2021.106266
[12] ZHANG Jianjun,WANG Tao,TONG Ying,HUANG He,et al.New Exploration of Tracking Deep Ancient Crustal Components: A Combined Analysis of Xenocrystic/Inherited Zircon Information within Different Genetic Types of Granitoids in Chinese Altai . Acta Geologica Sinica (English Edition), 2021, 95(supp.1): 106–108
[13] Gyk A , Bo X , Ye Z , et al. Geology and petrogenesis of the Sungun deposits: Implications for the genesis of porphyry-type mineralisation in the NW Urumieh–Dokhtar magmatic Arc, Iran[J]. Ore Geology Reviews, 2021, 131.
DOI:10.1016/j.oregeorev.2021.104013
[14] Shen, J.-Q.; Hu, Z.-K.; Cui,S.-Y.; Zhang, Y.-F.; Li, E.-Q.; Liang, W.;Xu, B. A Study on Beryl in the Cuonadong Be-W-Sn Polymetallic Deposit, Longzi County, Tibet, China.Crystals 2021, 11, 777.
[15] Wanwan Hu, Pengfei Li, Min Sun, Inna Safonova, Yingde Jiang, Chao Yuan, Pavel Kotler,Provenance of late Paleozoic sedimentary rocks in eastern Kazakhstan: Implications for the collision of the Siberian margin with the Kazakhstan collage,Journal of Asian Earth Sciences,2021,104978,ISSN 1367-9120.
DOI:10.1016/j.jseaes.2021.104978.
[16] Qie Qin, Tao Wang, He Huang, Zhaochong Zhang, Ying Tong, Peng Song, Jianjun Zhang,Late Carboniferous and Early Permian garnet-bearing granites in the South Tianshan Belt, NW China: Two Late Paleozoic magmatic events and implications for crustal reworking,Journal of Asian Earth Sciences,Volume 220,2021,104923,ISSN 1367-9120,
DOI: 10.1016/j.jseaes.2021.104923.
[17]Tian-Yu Lu, Zhen-Yu He, Reiner Klemd; Identifying crystal accumulation and melt extraction during formation of high-silica granite. Geology 2021;
DOI: 10.1130/G49434.1
[18]Jiyuan Yin, Wenjiao Xiao, Christopher J. Spencer, Min Sun, Wen Chen, Huiqing Huang, Chao Yuan, Yunying Zhang, He Huang, Xiaoping Xia, Zaili Tao; The role and significance of juvenile sediments in the formation of A-type granites, West Junggar oceanic arc (NW China): Zircon Hf-O isotopic perspectives. GSA Bulletin 2020;; 133 (7-8): 1560–1574. DOI: 10.1130/B35790.1
Publications (2020)
1. Ding-Jun Wen,Zhen-Yu He.Late Carboniferous crustal evolution of the Chinese Central Tianshan microcontinent: Insights from zircon U–Pb and Hf isotopes of granites.Geological Journal. 2020;55:1947–1963.
DOI: https://doi.org/10.1002/gj.3794
2. Tian-Yu Lu,Zhen-Yu He,Reiner Klemd.Two phases of post-onset collision adakitic magmatism in the southern Lhasa subterrane, Tibet, and their tectonic implications.The Geological Society of America.
DOI:https://doi.org/10.1130/B35326.1
3. Li-Li Yan, Zhen-Yu He,, Reiner Klemd, Christoph Beier, Xi-Sheng Xu. Tracking crystal-melt segregation and magma recharge using zircon trace element data. Chemical Geology 542(2020) 119596.
DOI:https://doi.org/10.1016/j.chemgeo.2020.119596
4.Bolat P. Khassen, Inna Yu Safonova,Pyotr V. Yermolov,Rostislav M Antonyuk,etc. The Tekturmas ophiolite belt of central Kazakhstan:Geology, magmatism, and tectonics.Geological Journal. 2020;55:2363–2382.
DOI:https://doi.org/10.1002/gj.3782.
5.Late Paleozoic Chingiz and Saur arc amalgamation in West Junggar (NW China): implications for accretionary tectonics in the southern Altaids.Song Shuaihua,Xiao Wenjiao,Windley Brian F,etc.
DOI: https://doi.org/10.1029/2019TC005781
6.Mesozoic juvenile crustal formation in the easternmost Tethys: Zircon Hf isotopic evidence from Sumatran granitoids, Indonesia. Shan Li; Sun-Lin Chung; Yu-Ming Lai; Azman A. Ghani; Hao-Yang Lee; Sayed Murtadha . Geology (2020).
DOI: https://doi.org/10.1130/G47304.1
7. Rejuvenation of ancient micro-continents during accretionary orogenesis: Insights from the Yili Block and adjacent regions of the SW Central Asian Orogenic Belt. He Huang,Tao Wang, Ying Tong,Qie Qin,Xuxuan Ma,Jiyuan Yin.
DOI:https://doi.org/10.1016/j.earscirev.2020.103255
8.Magma recharge processes of the Yandangshan volcanic-plutonic caldera complex in the coastal SE China: Constraint from inter-grain variation of Sr isotope of plagioclase. Li-li Yan,Zhen-yu He,Xi-Sheng Xu.Journal of Asian Earth Sciences, Volume 201, 1 October 2020, 104511.
DOI:https://doi.org/10.1016/j.jseaes.2020.104511
9.Xiao, W.*, Liu, Y., Somerville, I., Schulmann, K., Kusky, T, Seltmann, R., 2020. Accretionary tectonics, deep structures and metallogeny of southern Altaids. Geological Journal, 55, 1613-1619.
DOI: https://doi.org/10.1002/gj.3797
10.Xiao, W.*, Song, D., Windley, B.F., Li, J., Han, C., Wan, B., Zhang, J., Ao, S., Zhang, Z., 2020. Accretionary processes and metallogenesis of the Central Asian Orogenic Belt: advances and perspectives. Science China Earth Sciences, 63, 329–361.
DOI:https://doi.org/10.1007/s11430-019-9524-6
11.Ao, S., Xiao, W., Windley, B., Mao, Q., Zhang, J., Zhang, Z., 2020. Ordovician to Early Permian accretionary tectonics of Eastern Tianshan: Insights from Kawabulak ophiolitic mélange, granitoid and granitic gneiss. Geological Journal, 55, 280-298.
DOI: https://doi.org/10.1002/gj.3103.
12.Aouizerat, A., Xiao, W.*, Schulmann, K., Windley, B., Zhou, J., Zhang, J., Ao, S., Song, D., Monié, P. and Liu, K., 2020. Accretion, subduction erosion, and tectonic extrusion during Late Paleozoic to Mesozoic orogenesis in NE China. Journal of Asian Earth Sciences, 194, 104258.
DOI:https://doi.org/10.1016/j.jseaes.2020.104258
13.Bai, X., Chen, Y., Song, D., Xiao, W.*, Windley, B., Ao, S., Li, L. and Xiang, D., 2020. A new Carboniferous–Permian intra‐oceanic subduction system in the North Tianshan (NW China): Implications for multiple accretionary tectonics of the southern Altaids. Geological Journal, 55, 2232-2253.
DOI:https://doi.org/10.1002/gj.3787
14.Borbugulov, E., Chen, Y., Xiao, W.*, Windley, B.F., Schulmann, K., Zhang, J., Zhang, Z., Song, S., Li, R., Sang, M., 2020. Late Carboniferous southward migration of Tarbagatay subduction–accretion complex by slab retreat and break-off in West Junggar (NW China). Geological Journal, 55, 11-30.
DOI:https://doi.org/10.1002/gj.3408.
15.Chen, Z.Y., Xiao, W.J.*, Windley, B.F., Schulmann, K., Mao, Q.G., Zhang, Z.Y., Zhang, J.E., Li, Y.C., Song, S.H., 2020. Latest Permian–early Triassic arc amalgamation of the Eastern Tianshan (NW China): Constraints from detrital zircons and Hf isotopes of Devonian–Triassic sediments. Geological Journal, 55, 1708-1721,
DOI:https://doi.org/10.1002/gj.3540.
16.Esmaeili, R., Xiao, W.*, Ebrahimi, M., Zhang, J., Zhang, Z., Abd El-Rahman, Y., Han, C., Wan, B., Ao, S., Song, D., Shahabi, S, Aouizerat, A., 2020. Makran ophiolitic basalts (SE Iran) record Late Cretaceous Neotethys plume-ridge interaction. International Geology Review, 62(13-14), 1677-1697.
DOI:https://doi.org/10.1080/00206814.2019.1658232
17.Esmaeili, R., Xiao, W.*, Griffin, W., Shafaii Moghadam, H., Zhang, Z., Ebrahimi, M., Zhang, J., Wan, B., Ao, S, Bhandari, S., 2020. Reconstructing the source and growth of the Makran Accretionary Complex: Constraints from detrital zircon U‐Pb Geochronology. Tectonics, 39.
DOI:https://doi.org/10.1029/2019TC005963.
18.Guy, A., Schulmann, K., Soejono, I, Xiao, W., 2020. Revision of the Chinese Altai‐East Junggar terrane accretion model based on geophysical and geological constraints. Tectonics, 39, e2019TC006026.
DOI:https://doi.org/10.1029/2019TC006026
19.Jia, X., Zhai, M., Xiao, W., Li, L., Ratheesh-Kumar, R. T., Wu, J., Liu, Y. Mesoarchean to Paleoproterozoic crustal evolution of the Taihua Complex in the southern North China Craton. Precambrian Research, 2020, 337: 105451.
DOI:https://doi.org/10.1016/j.precamres.2019.105451
20.Li, Y., Xiao, W., Li, Z., Wang, K., Zheng, J.P, Brouwer, F., 2020. Early Neoproterozoic magmatism in the Central Qilian block, NW China: Geochronological and petrogenetic constraints for Rodinia assembly. Geological Society of America Bulletin, 132, 2415–2431.
DOI:https://doi.org/10.1130/B35637.1
21.Li, Y., Zheng, J.P., Xiao, W., Wang, G, Brouwer, F., 2020. Circa 2.5 Ga granitoids in the eastern North China craton: Melting from ca. 2.7 Ga accretionary crust. Geological Society of America Bulletin, 132, 817–834.
DOI:https://doi.org/10.1130/B35091.1
22.Li, Z., Li, Y., Xiao, W., Zheng, J.P., Brouwer, F., 2020. Geochemical and zircon U-Pb-Hf isotopic study of metasedimentary rocks from the Huangyuan Group of the Central Qilian block (NW China): Implications for paleogeographic reconstruction of Rodinia. Precambrian Research, 351, 105947.
DOI:https://doi.org/10.1016/j.precamres.2020.105947
23.Ratheesh-Kumar, R.T., Windley, B.F., Xiao, W.J., Jia, X-L., Mohanty, D.P., Zeba- Nezrin, F.K., 2020. Early growth of the Indian lithosphere: implications from the assembly of the Dharwar Craton and adjacent granulite blocks, southern India. Precambrian Research, 336, 105491,
DOI: https://doi.org/10.1016/j.precamres. 2019.105491.
24.Rahman, M.J.J.*, Xiao, W.*, Sakawat, H.M., Rumana, Y., Sayem, A.S.M., Ao, S., Yang, L., Rashed, A., Tamanaya, DN., 2020. Geochemistry and detrital zircon U-Pb dating of Pliocene-Pleistocene sandstones of the Chittagong Tripura Fold Belt (Bangladesh): Implications for provenance. Gondwana Research, 2020, 78, 278-290.
DOI:https://doi.org/10.1016/j.gr.2019.07.018
25.Sang, M., Xiao, W.*, Feng, Q, Windley, B., 2020. Radiolarian age and geochemistry of cherts from the Atbashi accretionary complex, Kyrgyz South Tianshan. Geological Journal, 55 (12), 8329-8338.
DOI:https://doi.org/10.1002/gj.3952
26.Sang, M., Xiao, W*, Windley, B., 2020. Unravelling a Devonian–Triassic seamount chain in the South Tianshan high‐pressure/ultrahigh‐pressure accretionary complex in the Atbashi area (Kyrgyzstan). Geological Journal, 55, 2300-2317.
DOI:https://doi.org/10.1002/gj.3776
27.Song, S., Xiao, W.*, Windley, B., Collins, A., Chen, Y., Zhang, J., Schulmann, K., Han, C., Wan, B., Ao, S., Zhang, Z., Song, D, Li, R., 2020. Late Paleozoic Chingiz and Saur Arc Amalgamation in West Junggar (NW China): Implications for Accretionary Tectonics in the Southern Altaids. Tectonics, 39, e2019TC005781.
DOI:https://doi.org/10.1029/2019TC005781.
28.Tian, Z., Liu, F., Liu, P., Wen, F, Xiao, W., 2020. A Paleoproterozoic nappe on Meso-Archean gneisses exhumed by a Cretaceous metamorphic core complex in northeastern North China Craton. International Journal of Earth Sciences, 109, 1403-1420.
DOI:https://doi.org/10.1007/s00531-020-01870-4
29.Wang, T., Seltmann, R., Huang, H., Tong, Y., Gladkochub, D., O'Reilly, S., Staal, C., Hou, Z., Safonova, I, Xiao, W., 2020. Orogen architecture and crustal growth from accretion to collision (IGCP#662): Scientific activities 2018-2019. Episodes.
DOI:https://doi.org/10.18814/epiiugs/2020/020061
30.Yang, H., Zhang, H., Xiao, W., Tao, L., Gao, Z., Luo, B., Zhang, L., 2020. Multiple Early Paleozoic granitoids from the southeastern Qilian orogen, NW China: Magma responses to slab roll-back and break-off. Lithos, 2020, 105910.
DOI:https://doi.org/10.1016/j.lithos.2020.105910
31.Yang, L., Xiao, W.*, Rahman, M., Windley, B., Schulmann, K., Ao, S., Zhang, J., Chen, Z., Hossain, M, Dong, Y., 2020. Indo-Burma passive amalgamation along the Kaladan Fault: Insights from zircon provenance in the Chittagong-Tripura Fold Belt (Bangladesh). Geological Society of America Bulletin, 132, 1953-1968.
DOI:https://doi.org/10.1130/B35429.1
32.Yin, J., Xiao, W., Sun, M., Chen, W., Yuan, C., Zhang, Y., Wang, T., Du, Q., Wang, X, Xia, X., 2020. Petrogenesis of Early Cambrian granitoids in the western Kunlun orogenic belt, Northwest Tibet: Insight into early stage subduction of the Proto-Tethys Ocean. Geological Society of America Bulletin, 132, 2221-2240.
DOI:https://doi.org/10.1130/B35408.1
33.Yogibekov, D., Sang, M., Xiao, W.*, Windley, B., Mamadjanov, Y., Yang, H., Huang, P., Aminov, J., Vatanbekov, F., 2020. Late Palaeozoic to Late Triassic northward accretion and incorporation of seamounts along the northern South Pamir: Insights from the anatomy of the Pshart accretionary complex. Geological Journal, 55 (12), 7837-7857.
DOI:https://doi.org/10.1002/gj.3906
34.Zhai, M.*, Wang, C., Xiao, W.*, Zhou, M.-F., 2020. Sedimentology, Geodynamics, resources and environments of China and adjacent areas: A special issue in memory of Professor Shu Sun for his scientific contributions and academic services. Journal of Asian Earth Sciences, 194, 104391.
DOI:https://doi.org/10.1016/j.jseaes.2020.104391
35.Zheng, R., Li, J., Zhang, J., Xiao, W., Wang, Q., 2020. Permian oceanic slab subduction in the southmost of Central Asian Orogenic Belt: Evidence from adakite and high-Mg diorite in the southern Beishan. Lithos, 358-359, 105406.
DOI:https://doi.org/10.1016/j.lithos.2020.105406
36.Perchuk, A.L., Gerya, T.V., Zakharov, V.S. and Griffin, W.L. 2020. Building cratonic keels in Precambrian plate tectonics. Nature, 586, 395–401.
37.Jiang, W., Yu, J.-H., Wang, X., Griffin, W.L., Pham, T.H., Nguyen, D.L. and Wang, F.Q. 2020. Early Paleozoic magmatism in northern Kontum Massif, Central Vietnam: Insights into tectonic evolution of the eastern Indochina Block. Lithos, 376-377, 105750.
Publications (2019)
1 Cao K , Yang Z M , Mavrogenes J , et al. Geology and Genesis of the Giant Pulang Porphyry Cu-Au District, Yunnan, Southwest China[J]. Economic Geology, 2019, 114(2):275-301.
DOI: doi.org/10.5382/econgeo.2019.4631;
2 Tserendash Narantsetseg, Demberel Orolmaa, Chao Yuan, Tao Wang, Lei Guo, Ying Tong,Xinyu Wang, Orsoo Enkh-Orshikh, Tumen-Ulzii Oyunchimeg, Puntsag Delgerzaya,Batkhuyag Enkhdalai. Early-Middle Paleozoic volcanic rocks from the Ereendavaa terrane (Tsarigiin gol area, NE Mongolia) with implications for tectonic evolution of the Kherlen massif. Journal of Asian Earth Sciences 175 (2019) 138–157.
DOI: doi.org/10.1016/j.jseaes.2018.12.008 ;
3 D. Konopelko,Yu.S. Biske, K. Kullerud, I. Ganiev, R. Seltmann, W. Brownscombe,R. Mirkamalov, B. Wang, I. Safonova, P. Kotlerb, V. Shatov, M. Sun, J. Wong. Early Carboniferous metamorphism of the Neoproterozoic South Tien Shan-Karakum basement: New geochronological results from Baisun and Kyzylkum, Uzbekistan.Journal of Asian Earth Sciences 177 (2019) 275–286.
DOI: https://doi.org/10.1016/J.JSEAES.2019.03.025;
4 Harald Furnes , Inna Safonova.Ophiolites of the Central Asian Orogenic Belt: Geochemical and petrological characterization and tectonic settings.Geoscience Frontiers xxx (xxxx) xxx(ARTICAL IN PRESS).
DOI: https://doi.org/10.1016/j.gsf.2018.12.007
5 M. L. Kuibida,*, V. I. Timkin, V. A. Krivchikovc, O. V. Murzin, V. I. Krupchatnikov,O. M. Popova, N. N. Kruk, S. N. Rudnev, Y. V. Kuibida, S. P. Shokal’sky,N. I. Gusev, T. Komiya, S. Aoki, M. Sun, and A. V. Naryzhnova. Middle Paleozoic Rhyolite of the Gorny and Rudny Altai: Geochronology and Composition.Doklady Akademii Nauk, 2019, Vol. 487, No. 5.
download the paper
6.Shan Li ,Sun‐Lin Chung ,Zengqian Hou , David Chew ,Tao Wang , Baodi Wang, Yanbin Wang。Early Mesozoic Magmatism Within the Tibetan Plateau: Implications for the Paleo‐Tethyan Tectonic Evolution and Continental Amalgamation.
DOI : https://doi.org/10.1029/2019TC005546
7.Li, Weikai, Yang, Zhiming, Cao, Kang,etc. Redox-controlled generation of the giant porphyry Cu–Au deposit at Pulang, southwest China[J]. Contributions to Mineralogy and Petrology, 174(2).
DOI: https://doi.org/10.1007/s00410-019-1546-x
8.Zhang Jianjun, Zhang Lei*,Wang Tao, Shi Xingjun. 2019. Geochemical, age and Hf- in- zircon isotopic characteristics and geological significance of granite and MME from the Mandelinwula pluton, northern Alxa block, Inner Mongolia. Geological Bulletin of China, 2019, 38(10):1675-1690 (in Chinese).
download the paper
9.Zhang Jianjun, Tong Ying*, Wang Tao, Huang Wei, Zhao Jianxin, Hou Jiyao. 2019. Petrogenesis and tectonic significance of Early Carboniferous dyke swarms in Lvshigou pluton of Qiongheba area, East Junggar, Xinjiang. Acta Petrologica e Mineralogic ,38(5):606~630(in Chinese).
download the paper
10.PengSong, TaoWang*, YingTong, JianjunZhang, HeHuang, QieQin Contrasting deep crustal compositions between the Altai and East Junggar orogens, SW Central Asian Orogenic Belt: Evidence from zircon Hf isotopic mapping, Lithos, 2019,328–329, 297-311
DOI: https://doi.org/10.1016/j.lithos.2018.12.039
11. WANG C.Y, WANG, T.*, STAAL, C. V., LIN, S., & ZHANG, J. Nd Isotopic Characteristics of Granitoids from the New foundland Appalachians, Acta Geologica Sinica - English Edition, 2019, 93(S3), 147–149
DOI: https://doi.org/10.1111/1755-6724.14273
12. SONG, P., WANG, T*., & TONG, Y. LA‐ICP‐MS Zircon U‐Pb Age and Hf Isotopic Composition of Late Carboniferous Granodiorite in the Southern East Junggar, Xinjiang: Genesis and Tectonic , Acta Geologica Sinica - English Edition, 2019, 93(S3), 140–141
DOI: https://doi.org/10.1111/1755-6724.14270
13. WANG Tao,WANG Xiaoxia,TONG Ying,HUANG He,LI Shan,ZHANG Jianjun,GUO Lei,ZHANG Lei,SONG Peng,QIN Qie A Comparison of Nd Isotopes of Granitoids from the Central Asian Orogenic Belt and Qinling-Dabie Orogen, and Implications for Understanding of Crustal Growth from Accretion to Collision, Acta Geologica Sinica - English Edition, 2019, 93(S3), 150–151
DOI: Https://doi.org/10.1111/1755-6724.14274
14. SONG Peng,WANG Tao*,TONG Ying,ZHANG Jianjun,HUANG He,ZHANG Lei,QIN Qie,SHEN Huan Carboniferous Highly Fractionated I-type Granites from the Kalamaili Fault Zone, Eastern Xinjiang, NW China: Petrogenesis and Tectonic Implications, Acta Geologica Sinica - English Edition, 2019,93(5):1169~1187
DOI:Https://doi.org/10.1111/1755-6724.14360
15. KANG Lei,JI Wenhua,WANG Tao*,LI Wenming,SUN Jiming Late Carboniferous-Early Permian Mafic-Ultramafic Complexes in Beishan, Southwestern Central Asian Orogenic Belt and their Significance, Acta Geologica Sinica - English Edition, 2019,93(z1):113~115
DOI: Https://doi.org/10.1111/1755-6724.14261
16. WANG Tao, GUO Lei, LI Shan, WANG Xiaoxia, WANG Chaoyang SOME IMPORTANT ISSUES IN THE STUDY OF GRANITE TECTONICS , Journal of Geomechanics, 2019 25(5): 899-919(in Chinese with English abstract)
DOI: https://doi.org/10.12090/j.issn.1006-6616.2019.25.05.074
17. Liu Y C, Song Y C, Fard M, Zhou L M, Hou Z Q and Kendrick M A. 2019. Pyrite Re-Os age constraints on the Irankuh Zn-Pb deposit, Iran, and regional implications. Ore Geology Reviews, 104: 148-159.
DOI:https://doi.org/10.1016/j.oregeorev.2018.11.002
18. Liu Y C, Yang Z S, Yu Y S, Ma W, Yue L L and Tang B L. 2019. Characteristics and Genesis of the Zhaofayong Karst-controlled MVT Deposit in the Changdu Region, Tibet. Acta Geoscientica Sinica, 40 (6): 853-870 (in Chinese with English abstract).
DOI: https://doi.org/10.3975/cagsb.2019.090501
19. Ma W, Liu Y C*, Yang Z S, Li Z Q, Zhao X Y and Yue L L. 2019. Characteristics of Ore⁃Forming Fluids of Lietinggang⁃Leqingla Pb⁃Zn⁃Fe⁃Cu⁃Mo Polymetallic Deposit in Tibetan: Evidence from Fluid Inclusions and Stable Isotope Compositions. Earth Science, 44 (6): 1957-1973 (in Chinese with English abstract). (Corresponding author)
20. Tang B L, Liu Y C*, Ma W, Yue L L, Huang S Q, Zhuang L L, Wu Z Y and Zhou M L. 2019. The Existence of the Jurassic Volcanic Rocks in the Southern Part of the Lancangjiang Belt and Its Geological Significance. Acta Geoscientica Sinica,(in Chinese with English abstract). (Corresponding author)
21. Hongrui Zhang, Zengqian Hou. 2019. Comparisons of Metallogenesis within the Pyrenees-Alps-Zagros-Himalaya collisional orogens. Proceedings of the 15th SGA Biennial Meeting, 27-30 August 2019, Glasgrow, Scotland, Pages 1140-1143
22. Xiao Wenjiao, Song Dongfang, Windley B.F., Li Jiliang, Han Chunming, Wan Bo, Zhang Ji’en, Ao Songjian, Zhang Zhiyong. Research progresses of the accretionary process and metallogenesis of the Central Asian Orogenic Belt. Science China Earth Sciences, 2019, 49: 1512-1545.
23. Xiao Wenjiao, Liu Yongjiang, Hou Zengqian, Li Shan. A special issue devoted to the accretionary and collisional tectonics of the Altaids and its metallogeny. Acta Geologica Sinica (English Edition), 2019, 93(5): I-VI.
24. Xiao Wenjiao, Song Dongfang, Han Chunming, Wan Bo, Zhang Ji’en, Ao Songjian, Zhang Zhiyong. Acta Geologica Sinica (English Edition), 2019, 93(5): 1163-1168.
25. Song Dongfang, Xiao Wenjiao, Collins Alan, Glorie Stijn, Han Chunming. Late Carboniferous–early Permian arc magmatism in the south-western Alxa Tectonic Belt (NW China): Constraints on the late Palaeozoic subduction history of the Palaeo-Asian Ocean. Geological Journal, 2019, 54: 1046-1063.
26. Chen Zhenyu, Xiao Wenjiao, Windley B.F., Schulmann Karel, Mao Qigui, Zhang Zhiyong, Zhang Ji’en, Deng Chen, Song Shuaihua. Composition, Provenance, and Tectonic Setting of the Southern Kangurtag Accretionary Complex in the Eastern Tianshan, NW China: Implications for the Late Paleozoic Evolution of the North Tianshan Ocean. Tectonics, 2019, 38: 2779-2802.
27. Aouizerat Arthur, Xiao Wenjiao, Schulmann Karel, Jeřábek Petr, Monié Patrick, Zhou Jianbo, Zhang Jinjiang, Ao Songjian, Li Rui, Li Yongchen, Esmaeili Rasoul. Structures, strain analyses, and 40Ar/39Ar ages of blueschist-bearing Heilongjiang Complex (NE China): Implications for the Mesozoic tectonic evolution of NE China. Geological Journal, 2019, 54: 716-745.
28. Bhandari Saunak, Xiao Wenjiao, Ao Songjian, Windley B.F., Li Rui, Esmaeili Rasoul. Detrital geochronology of the Gondwana sequence of the Lesser Himalaya of the Nepal Himalaya. Geological Journal, 2019, 54: 3909-3920.
29. Bhandari Saunak, Xiao Wenjiao, Ao Songjian, Windley B.F., Zhu Rixiang, Li Rui, Wang Hao Y.C., Esmaeili Rasoul. Rifting of the northern margin of the Indian craton in the Early Cretaceous: Insights from the Aulis Trachyte of the Lesser Himalaya (Nepal). Lithosphere, 2019, 11(5): 643-651.
DOI: https://doi.org/10.1130/L1058.1
30. Li Yongchen, Xiao Wenjiao, Tian Zhonghua. Early Paleozoic accretionary tectonics of the West Kunlun Orogen: Insights from Datong granitoids, mafic-ultramafic complexes, and Silurian-Devonian sandstones, Xinjiang, NW China. Geological Journal, 2019, 54: 1505-1517.
DOI: https://doi.org/10.1002/gj.3246
31. Liu Yin, Xiao Wenjiao, Windley B.F., Li Rongshe, Ji Wenhua, Zhou Kefa, Sang Miao, Chen Yichao, Jia Xiaoliang, Li Liang, Zhang Haidi. Late Triassic ridge subduction of Paleotethys: Insights from high-Mg granitoids in the Songpan-Ganzi area of northern Tibet. Lithos, 2019, 334-335: 254-272.
DOI: https://doi.org/10.1016/j.lithos.2019.03.012
32. Yin Jiyuan, Chen Wen, Thomson S.N., Sun Min, Wang Yanan, Xiao Wenjiao, Yuan Chao, Sun Jinbo, Long Xiaoping. Fission track thermochronology of the Tuwu-Yandong porphyry Cu deposits, NW China: Constraints on preservation and exhumation. Ore Geology Reviews, 2019, 113, 103104.
DOI:https://doi.org/10.1016/j.oregeorev.2019.103104
33. Shihua Zhong,Reimar Seltmann,Hongying Qu,Yingxin Song. Characterization of the zircon Ce anomaly for estimation of oxidation state of magmas: a revised Ce/Ce* method.Miner Petrol (2019) 113: 755.
DOI: https://doi.org/10.1007/s00710-019-00682-y
34. BoZu,Reimar Seltmann,Chunji Xue,Tao Wang etc.Multiple episodes of Late Paleozoic Cu-Au mineralization in the Chatkal-Kurama terrane: New constraints from the Kuru-Tegerek and Bozymchak skarn deposits, Kyrgyzstan. Ore Geology Reviews 113(2019)103077.
DOI: https://doi.org/10.1016/j.oregeorev.2019.103077
35. Xiao‐Bo Zhao Chun‐Ji Xue Reimar Seltmann Alla Dolgopolova Jens C. Ø. Andersen Guo‐Zhen Zhang.Volcanic–plutonic connection and associated Au‐Cu mineralization of the Tulasu ore district, Western Tianshan, NW China: Implications for mineralization potential in Palaeozoic arc terranes. Geological Journal.2020;1-24.
DOI: https://doi.org/10.1002/gj.3750
36. Plotinskaya, O., Shilovskikh, V., Najorka, J., Kovalchuk, E., Seltmann, R., & Spratt, J. (2019). Grain-scale distribution of molybdenite polytypes versus rhenium contents: μXRD and EBSD data. Mineralogical Magazine, 83(5), 639-644.
DOI:https://doi.org/10.1180/mgm.2019.49
37. Tilhac, R., Oliveira, B., Griffin, W.L., O'Reilly, S.Y., Schaefer, B.F., Alard, O., Ceuleneer, G., Afonso, J.C. and Grégoire, M. 2020. Reworking of old continental lithosphere: Unradiogenic Os and decoupled Hf-Nd isotopes in sub-arc mantle pyroxenites. Lithos, 354-355, 105346.
38. Daczko, N.R., Halpin, J.A., Fitzsimons, I.C.W. and Whittaker, J.M. 2018. A cryptic Gondwana-forming orogen located in Antarctica. Scientific Reports, 8, 8371.
39. Bindi, L. Griffin, W.L., Panero, W.R. Sirotkina, E., Bobrov, A. and Irifune T. 2018. Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites. Scientific Reports, 8, 5457.
40. Zheng, Y.C., Liu, S.A., Wu, C.D., Griffin, W.L., Li, Z.Q., Xu, B., Yang, Z.M., Hou, Z.Q. and O'Reilly, S.Y. 2019. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in collision setting. Geology, 47, 135-138.
41. Kazemi, Z., Ghasemi, H., Tilhac, R., Griffin, W.L., Shafaii Moghadam, H., O’Reilly, S.Y. and Mousivanda, R. 2019. Late Cretaceous subduction-related magmatism on the southern edge of Sabzevar basin, NE Iran. Journal of the Geological Society, London, 176, 530.
42. Safaii Moghadam, H., Stern, R.J., W.L. Griffin, W.L., Khedr, M.Z., Kirchenbaur, M., Ottley, C.J., Whattam, S., Kimura, J. - I., Ghorbani, G., Gain, S., O’Reilly, S.Y. and Tamura , A. 2019. Subduction initiation and back-arc opening north of Neo-Tethys: Evidence from the Late Cretaceous Torbat-e-Heydarieh ophiolite of NE Iran. Geological Society of America Bulletin (in press).
DOI: https://doi.org/10.1130/B35065.1.
43. Wang, C.Y., Liu, Y., Foley, S.F., Zong, K. and Hu, Z.C. 2019. Lithospheric transformation of the northern North China craton by changing subduction style of the Paleo-Asian oceanic plate: Constraints from peridotite and pyroxenite xenoliths in the Yangyuan basalts. Lithos, 328-329, 58-68.
44. Förster, M.W., Foley, S.F., Alard, A. and Buhre, S. 2019. Partitioning of Nitrogen during Melting and Recycling in Subduction Zones and the Evolution of Atmospheric Nitrogen. Chemical Geology, 525, 334-342.
45. Choi, E., Fiorentini, M.L., Giuliani, A., Foley, S.F., Roland Maas, R. and Taylor, W.R. 2019. Subduction-related petrogenesis of Late Archean calc-alkaline lamprophyres in the Yilgarn Craton (Western Australia). Precambrian Research, (in press).
46.Composition, Provenance, and Tectonic Setting of the Southern Kangurtag Accretionary Complex in the Eastern Tianshan, NW China: Implications for the Late Paleozoic Evolution of the North Tianshan Ocean.Zhenyu Chen,Wenjiao Xiao Brian F. Windley,etc. Tectonics ,V38(8) ,August 2019,P2779-2802.
DOI:https://doi.org/10.1029/2018TC005385
47.Cámara, F., Bindi, L., Pagano, A., Pagano, R., Gain, S.E.M. and Griffin, W.L. 2019. Dellagiustaite: A novel natural spinel containing V2+. Minerals, 9, 1-4.
48.Safaii Moghadam, H., Stern, R.J., W.L. Griffin, W.L., Khedr, M.Z., Kirchenbaur, M., Ottley, C.J., Whattam, S., Kimura, J. - I., Ghorbani, G., Gain, S., O’Reilly, S.Y. and Tamura , A. 2019. Subduction initiation and back-arc opening north of Neo-Tethys: Evidence from the Late Cretaceous Torbat-e-Heydarieh ophiolite of NE Iran. Geological Society of America Bulletin,
49.Zheng, Y.C., Liu, S.A., Wu, C.D., Griffin, W.L., Li, Z.Q., Xu, B., Yang, Z.M., Hou, Z.Q. and O'Reilly, S.Y. 2019. Cu isotopes reveal initial Cu enrichment in sources of giant porphyry deposits in collision setting. Geology, 47, 135-138.
Publications (2018)
1. Cao, K., Yang, Z.-M., Xu, J.-F., Fu, B., Li, W.-K. and Sun, M.-Y. (2018) Origin of dioritic magma and its contribution to porphyry Cu–Au mineralization at Pulang in the Yidun arc, eastern Tibet. Lithos 304-307, 436-449.
DOI:10.1016/j.lithos.2018.02.018
2. Huang, H., Wang, T., Zhang, Z., Li, C., Qin, Q., 2018. Highly differentiated fluorine-rich, alkaline granitic magma linked to rare metal mineralization: A case study from the Boziguo’er rare metal granitic pluton in South Tianshan Terrane, Xinjiang, NW China. Ore Geology Reviews 96, 146-163.
DOI : 10.1016/j.oregeorev.2018.04.021
3.Huang He, Zhang Zhaochong, Santosh M., Cheng Zhiguo, Wang Tao. Crustal evolution in the South Tianshan Terrane: Constraints from detrital zircon geochronology and implications for continental growth in the Central Asian Orogenic Belt. Geological Journal. In press.
DOI:10.1002/gj.3235
4. Wang Tao, Tong Ying, Wang Xiao-xia, Mao Jian-ren, Zhang Hong-rui, Huang He, Li Shan, Guo Lei, Zhang Jian-jun.2018. Some progress on understanding the Phanerozoic granitoids in China. China Geology,1:84-108.
5. Song, D.F., Xiao, W.J., Collins, A.S., Glorie, S., Han, C.M., Li, Y.C., 2018. Final subduction processes of the Paleo-Asian Ocean in the Alxa Tectonic Belt (NW China): Constraints from field and chronological data of Permian arc-related volcano-sedimentary rocks. Tectonics 37, 1658-1687.
DOI: 10.1029/2017TC004919
6. Arnaud Broussolle, Carmen Aguilar, Min Sun, Karel Schulmann, Pavla Štípská, Yingde Jiang, Yang Yu, Wenjiao Xiao, Sheng Wang and Jitka Míková, Polycyclic Palaeozoic evolution of accretionary orogenic wedge in the southern Chinese Altai: Evidence from structural relationships and U Pb geochronology, Lithos,
DOI: 10.1016/j.lithos.2018.06.005
7. Brian F.Windley ,Wenjiao Xiao ,Ridge subduction and slab windows in the Central Asian Orogenic Belt: Tectonic implications for the evolution of an accretionary orogen.
8. Rongguo Zheng,Jinyi Li Wenjiao Xiao,Lijia Wang, A new ophiolitic mélange containing boninitic blocks in Alxa region: Implications for Permian subduction events in southern CAOB .
Click to download
9. Zhang HR, Hou ZQ. 2018. Metallogenesis within continental collision zones: Comparisons of modern collisional orogens. 61 (12): 1737–1760.
https://doi.org/10.1007/s11430-017-9303-0
10.Daczko, N.R., Halpin, J.A., Fitzsimons, I.C.W. and Whittaker, J.M. 2018. A cryptic Gondwana-forming orogen located in Antarctica. Scientific Reports, 8, 8371.
11.Bindi, L. Griffin, W.L., Panero, W.R. Sirotkina, E., Bobrov, A. and Irifune T. 2018. Synthesis of inverse ringwoodite sheds light on the subduction history of Tibetan ophiolites. Scientific Reports, 8, 5457.
12.Wu, S., Huang, R., Xu, Y., Yang, Y., Jiang, and Zhu, L. 2018. Seismological evidence for a remnant oceanic slab in the Western Junggar, Northwest China. Journal of Geophysical Research: Solid Earth, 123, 4157-4170.
13.Brueckner, H.K., Medaris, L.G. Jr., Griffin, W.L., Johnston, S.M., Hartz, E.H., Pearson, N., Cai., Y. and Andresen, A. 2018. Mechanical Mixing of Garnet Peridotite and Pyroxenite in the Orogenic Peridotite Lenses of the Tvaerdal Complex, Liverpool Land, Greenland Caledonides. Journal of Petrology, 59, 2191–2220.
14.Medaris, L.G. Jr., Brueckner, H.K., Cai, Y., Griffin, W.L. and Janák, M. 2018. Eclogites in peridotite massifs in the Western Gneiss Region, Scandinavian Caledonides: Petrogenesis and comparison with those in the Variscan Moldanubian Zone. Lithos, 322, 325-346.